

ibm.com/redbooks

MQSeries
Programming Patterns

Mark Perry
Manesh Balachandran

Jorge Plata
Paul Solano

Phillip Thomas

Install, tailor and configure specialist
tools such as JMS admin

Popular MQSeries programming
choices discussed

Common programming
pattern examples

Front cover

MQSeries Programming Patterns

April 2002

International Technical Support Organization

SG24-6506-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (April 2002)

This edition applies to MQSeries V5.2 for the Windows, UNIX (including AIX, HP-UX, and Sun
Solaris), OS/400, z/OS and OS/390 operating systems.

Comments may be addressed to:
International Business Machines Corporation, International Technical Support Organization
MP135
IBM UK Labs Ltd, Hursley
Hampshire, SO21 2JN United Kingdom

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. .xi
Special notice . xiii
Comments welcome. xiv

Part 1. Introduction . 1

Chapter 1. Introduction and patterns . 3
1.1 Programming with MQSeries . 4

1.1.1 What are patterns? . 4
1.1.2 One-to-one message flows . 4
1.1.3 One-to-many message flows . 5
1.1.4 Many-to-one message flows . 6
1.1.5 Publish/subscribe . 7
1.1.6 Request/reply . 8
1.1.7 One-way datagram, or send-and-forget pattern 9

Chapter 2. Messaging and the APIs . 11
2.1 Messaging, queuing and patterns . 12

2.1.1 What is messaging? . 12
2.1.2 What is queuing? . 12
2.1.3 What is message queuing?. 13

2.2 Transaction management . 13
2.2.1 Single-phase and two-phase commits . 14
2.2.2 XA specification. 15
2.2.3 Transactions in MQSeries. 15

2.3 Message grouping and segmentation . 16
2.4 MQSeries programming interfaces . 17

2.4.1 MQI . 18
2.4.2 AMI . 18
2.4.3 C++ . 19
2.4.4 MQSeries automation classes for ActiveX . 19
2.4.5 Java. 19
2.4.6 JMS . 20

Part 2. The APIs. 21
© Copyright IBM Corp. 2002. All rights reserved. iii

Chapter 3. Programming with MQI. 23
3.1 Overview . 24
3.2 Platforms and languages. 25
3.3 Libraries and stub programs . 26
3.4 Architectural model . 28
3.5 Programming with MQI . 30

3.5.1 Basic API concepts . 32
3.5.2 Connecting to the queue manager . 34
3.5.3 Opening MQSeries objects . 35
3.5.4 Closing the MQSeries object. 40
3.5.5 Disconnecting from the queue manager . 40
3.5.6 Putting messages in a queue . 41
3.5.7 Getting messages from a queue . 45
3.5.8 Advanced topics . 48

3.6 Transactions in MQI . 55
3.7 Message grouping in MQI . 56
3.8 Exploring the patterns . 59

3.8.1 The one-to-one, or point-to-point pattern . 59
3.8.2 The publish/subscribe pattern . 71

Chapter 4. Programming with AMI . 89
4.1 Overview . 90
4.2 Platforms and languages. 94
4.3 Libraries and packages . 96
4.4 Architectural model . 98
4.5 Programming with AMI . 101

4.5.1 Connecting to the queue manager . 101
4.5.2 Opening MQSeries objects . 102
4.5.3 Basic operations . 109
4.5.4 Deleting the session and closing the connection 114

4.6 How AMI compares to MQI . 115
4.7 Transaction management . 115
4.8 Grouping . 117
4.9 Exploring the patterns . 118

4.9.1 One-to-one or point-to-point . 118
4.9.2 Publish/subscribe . 124

Chapter 5. Programming with C++. 133
5.1 Overview . 134

5.1.1 Key features . 134
5.2 Platforms and languages. 134
5.3 Libraries. 135
5.4 C++ architectural model . 135
iv MQSeries Programming Patterns

5.5 Programming with the C++ API . 138
5.5.1 Connecting to the queue manager . 138
5.5.2 Opening MQSeries objects . 139
5.5.3 Closing MQSeries objects . 141
5.5.4 Disconnecting from the queue manager . 141
5.5.5 Putting messages on a queue. 141
5.5.6 Getting messages from a queue . 145

5.6 Advance topics . 148
5.6.1 Browsing messages on a queue . 148
5.6.2 Inquiring about and setting object attributes 149

5.7 Transaction management . 151
5.8 Message grouping. 152
5.9 Exploring the patterns . 154

5.9.1 The one-to-one or point-to-point pattern . 154
5.9.2 The publish/subscribe pattern . 165

Chapter 6. Programming with ActiveX . 181
6.1 Overview . 182
6.2 Platforms and languages. 183
6.3 Libraries. 184
6.4 Architectural model . 184
6.5 Programming with MQSeries automation classes for ActiveX 185

6.5.1 Connecting to the queue manager . 185
6.5.2 Opening MQSeries objects . 186
6.5.3 Basic operations . 189
6.5.4 Closing objects . 193
6.5.5 Closing the connection . 193

6.6 Transaction management . 194
6.7 Grouping . 197
6.8 Exploring the patterns . 198

6.8.1 Send-and-forget . 198
6.8.2 Request/reply . 199

Chapter 7. Programming with Java . 203
7.1 Overview . 204
7.2 Platforms . 204

7.2.1 Obtaining the package . 204
7.2.2 Running the MQSeries classes for Java . 205

7.3 Using the MQSeries classes for Java . 207
7.3.1 Connection modes . 207

7.4 Working with MQSeries Java API . 210
7.4.1 Setting up the connections . 210
7.4.2 Interacting with queues . 212
 Contents v

7.4.3 Working with MQSeries messages . 213
7.5 Application development . 215

7.5.1 Point-to-point pattern. 215

Chapter 8. Programming with JMS . 235
8.1 What is JMS? . 236
8.2 Overview . 237
8.3 JMS messages . 247

8.3.1 Mapping JMS messages onto MQSeries messages 247
8.3.2 JMS additional features. 252

8.4 MQSeries JMS implementation. 252
8.4.1 MQSeries JMS installation . 252
8.4.2 JMS administered objects - JNDI and JMSAdmin 253
8.4.3 JMSAdmin tool . 254
8.4.4 Invoking the administration tool. 254
8.4.5 JMSAdmin tool configuration . 255
8.4.6 Using JMSAdmin with the Persistent Name Server 256
8.4.7 Using the Persistent Name Server with VisualAge for Java 256
8.4.8 Configuring VisualAge for Java for use with JMS 258
8.4.9 Administering JMS JNDI objects with VisualAge for Java using

JMSAdmin . 260
8.4.10 Defining JMS administered objects . 261

8.5 JMS application development . 270
8.5.1 JMS point-to-point (PTP) model . 270
8.5.2 Programming approach in point-to-point messaging 271
8.5.3 Send-and-forget . 272
8.5.4 Request/reply . 277
8.5.5 JMS publish/subscribe model . 278

8.6 Asynchronous processing . 285
8.6.1 Message listeners . 285
8.6.2 Exception listeners . 287

8.7 Message selectors . 289
8.7.1 Working with message selectors. 292

Appendix A. Additional material . 293
Locating the Web material . 293
Using the Web material . 293

System requirements for downloading the Web material 294
How to use the Web material . 294

Related publications . 295
IBM Redbooks . 295

Other resources . 295
Referenced Web sites . 295
vi MQSeries Programming Patterns

How to get IBM Redbooks . 296
IBM Redbooks collections. 296

Abbreviations and acronyms . 297

Index . 299
 Contents vii

viii MQSeries Programming Patterns

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the
United States, other countries, or both:

e (logo)®
IBM ®
AIX®
AS/400®
C/400®
CICS®
DB2®
Encina®

IMS™
iSeries™
MQSeries®
MVS™
MVS/ESA™
Net.Commerce™
OS/2®
OS/390®

OS/400®
QMF™
Redbooks™
Redbooks Logo

™
RETAIN®
RPG/400®
S/390®

SP™
SupportPac™
Tivoli®
VisualAge®
WebSphere®
z/OS™

The following terms are trademarks of International Business Machines Corporation and Lotus
Development Corporation in the United States, other countries, or both:

Lotus®

The following terms are trademarks of other countries:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET
Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x MQSeries Programming Patterns

Preface

Today MQSeries offers the programmer more choices than ever in which to write
new MQSeries applications, from the most traditional Message Queue Interface
API all the way through to the popular and highly portable JMS interface.

Because of the many options available, it can sometimes be difficult for an
application programmer new to MQSeries to easily understand the differences
and benefits of each, or appreciate the implications of using one programming
approach versus another.

Of course, all the information needed to make these decisions is available in the
broad selection of manuals provided with the product and available separately
with SupportPacs. However, the intention of this redbook is to bring together
relevant parts of this information into one place and to describe each of the
programming choices in a way that is intended to help guide the MQSeries
programmer into making the best choices for particular situations.

This redbook will help you install, tailor and configure specialist tools such as
JMS admin, and will help you to design/create MQSeries applications. It gives a
broad and general understanding of the currently available MQSeries APIs.

We do this first by describing some of the more common examples and coding
patterns, and then explaining each one in turn using the different APIs MQSeries
supports to show the merits of each particular programming choice.

Because this book has been written by a team of MQSeries customers and
business partners who have had to make all these decisions and choices in the
past, they have attempted to illustrate and explain many of the easier routes the
programmer can take based on their experience.

This redbook positions the different MQSeries programming choices against
each other in such a way as to help the application writer to make a clearer and
more informed judgment as to which is the most suitable programming method
for a particular situation.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Hursley Center.
© Copyright IBM Corp. 2002. All rights reserved. xi

The authors - Manesh, Mark, Phillip, Paul, and Jorge

Mark Perry is an IT Specialist at the International Technical Support
Organization, Hursley Center. He joined IBM in 1977 and was an MVS system
and application programmer until joining MQSeries in 1991. He has 10 years of
experience within the MQSeries community at Hursley, mostly as a team leader
in System Test, as well as spending some time working for MQSeries Level 2
Support at IBM Raleigh, NC, USA, and IFS at IBM Poughkeepsie, NY, USA.
Mark has previously worked on other MQSeries-related redbooks.

Manesh Balachandran is a senior System Analyst working as an independent
consultant in the United States. He has over six years of experience in
programming, data management and system integration. He has worked
extensively on IBM technologies and holds IBM Solutions Expert Certification in
DB2/UDB, IBM Solutions Expert Certification in Net.Commerce and IBM
Specialist certification in MQSeries.
xii MQSeries Programming Patterns

Jorge Plata is an IT Specialist working for Technology Enablers, Inc., an IBM
business partner in Dallas. He has four years of experience in middleware. He
holds a degree in Computer Science from the Universidad Iberoamericana in
Mexico. His areas of expertise includes the development and management of
MQSeries and related products.

Paul Solano is an AIM Specialist working for GBM de Costa Rica and IBM
Alliance company located in San José, Costa Rica. He has four years experience
in Web-based application development and integration. He holds a degree in
Computer Science from the Instituto Tecnológico de Costa Rica. His areas of
expertise includes the WebSphere family of products and MQSeries application
design and development.

Phillip Thomas is a Lecturer in the Computer Information Systems Department
at California State University, Los Angeles. He has been working with MQSeries
since 1996. His areas of interest include object-oriented languages, distributed
systems and databases architecture.

Thanks to the following people for their contributions to this project:

Matt Lucas, Alex Russell, Craig Newman, Andy Hickson, Jeremy Weaving,
Steve Hall
WebSphere MQ, IBM Hursley, UK

Kavitha Sakthirajan, Nikhilesh Css
IBM India

Ian Parkinson, Lee Hollingdale
IBM Hursley, UK

Federico Demi
Primeur Italia Srl, Pisa, Italy

Special notice
This publication is intended to help MQSeries application programmers to make
informed programming choices when writing new applications. The information in
this publication is not intended as the specification of any programming
interfaces that are provided by MQSeries. See the PUBLICATIONS section of
the IBM Programming Announcement for MQSeries for more information about
what publications are considered to be product documentation.
 Preface xiii

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
xiv MQSeries Programming Patterns

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction

In the first part of this redbook, we discuss the typical programming flow patterns
that a programmer would use and the choices that the application programmer is
faced with when deciding upon the programming route to take. We provide brief
overviews of the language choices for the programming models, and we attempt
to make the process of choosing the right language easier, before we move on to
the real detail in Part 2.

Part 1
© Copyright IBM Corp. 2002. All rights reserved. 1

2 MQSeries Programming Patterns

Chapter 1. Introduction and patterns

In this chapter we will discuss some of the common MQSeries programming flow
patterns. We will introduce one-to-one, one-to-many, many-to-one, request/reply,
send-and-forget, and publish/subscribe patterns.

It is essential at this point that you have read and fully understand the MQSeries
book, An Introduction to Messaging and Queuing, GC33-0805, which fully
discusses all the MQSeries fundamentals we will be referring to throughout this
book.

You may also find it valuable to refer to the following MQSeries books:

Application Programming Reference, SC33-1673

Application Programming Guide, SC33-0807

Application Programming Reference Summary, SX33-6095

All of these books can be downloaded from:

http://www-3.ibm.com/software/ts/mqseries/library/manuals/

1

© Copyright IBM Corp. 2002. All rights reserved. 3

http://www-3.ibm.com/software/ts/mqseries/library/manuals/

1.1 Programming with MQSeries
MQSeries applications can be developed using a variety of programming
languages and styles. Procedural and object-oriented programming can be
performed using Visual Basic, C, C++, Java, and COBOL. Microsoft Windows NT
ActiveX/COM technology is also supported.

No matter how large or complex an MQSeries application is, it always has to
perform certain common operations just the same as any other MQSeries
application. These are the building blocks of any messaging application and at its
simplest messages have to be constructed, put onto queues, and be consumed
from the queues.

Of course, there will always need to be special code to check for errors and
exceptions as well as the code needed to interpret the messages and take the
appropriate actions based on the message content. Described below are some
of the most common flow patterns that can be used in MQSeries applications,
and in the subsequent chapters we show examples of how these can be coded
using the different APIs.

1.1.1 What are patterns?
Patterns are programming techniques that are used to address recurring design
problems that arise in specific design situations. In general, patterns attempt to
present solutions to these recurring problems based upon the experience of
those who have come across them many times in the past. This book looks at
the request/reply and publish/subscribe patterns within the context of the
MQSeries message-oriented middleware product.

1.1.2 One-to-one message flows
A one-to-one or point-to-point application (see Figure 1-1) is built around the
concept of message queues, senders, and receivers. Each message is
addressed to a specific queue, and a second program gets messages from that
queue.

Queues retain all the messages sent to them until the messages are either
consumed or until the messages expire.

One-to-one messaging has the following characteristics:

� Each message has only one consumer.

� There are no timing dependencies between a sender and a consumer of a
message. The consumer can get the message whether or not it was running
when the sender put the messages onto the queue.
4 MQSeries Programming Patterns

� The message consumer can, if required, acknowledge the successful
processing of a message by sending a reply back to the sender.

� One-to-one messaging can be used when every message you put on a queue
is to be processed successfully by one consumer.

Figure 1-1 One-to-one message flow

A one-to-one message flow that does not require a reply is often referred to as a
send-and-forget pattern.

1.1.3 One-to-many message flows
A one-to-many message flow (see Figure 1-2) differs from the one-to-one flow in
that the messages are put onto a queue as before but can be read from that
queue by multiple processes. This might be for the purposes of load balancing,
or simply that the message information needs to be used in different ways by
each consuming or browsing process. Again queues retain all the messages
sent to them until the messages are either consumed or until the messages
expire.

One-to-many messaging has the following characteristics:

� Each message has more than one possible application that will read or
consume it.

� There are no timing dependencies between a sender and consumers of a
message. The consumers can get the messages whether or not they were
running when the sender put the messages onto the queue.
 Chapter 1. Introduction and patterns 5

� The message consumers can, if required, acknowledge the successful
processing of a message by sending a reply back to the sender.

One-to-many messaging can be used when every message you put on a queue
is to be processed successfully by multiple processes or consumers.

Figure 1-2 One-to-many message flow

1.1.4 Many-to-one message flows
A many-to-one application (see Figure 1-3) can be built around the concept of
message queues, senders, and receivers. Messages from multiple processes
are addressed to a single specific queue, and a further program gets messages
from that queue.

Queues retain all the messages sent to them until the messages are either
consumed or until the messages expire.

Many-to-one messaging has the following characteristics:

� There are no timing dependencies between the senders and a consumer of a
message. The consumer can get the message whether or not it was running
when the sender put the messages onto the queue.

� The message consumer can, if necessary, acknowledge the successful
processing of a message by sending a reply back to the sender.

Many-to-one messaging can be used when messages you put on a simple
queue from multiple processes are to be processed successfully by one
consumer.
6 MQSeries Programming Patterns

Figure 1-3 Many-to-one message flow

1.1.5 Publish/subscribe
The publish/subscribe messaging pattern is built around the concept of topics. In
the publish/subscribe pattern, message-producing (sending applications)
applications broadcast messages by publishing to a topic. The
message-consuming (receiving) applications subscribe to topics to receive
messages published to those topics. Topics follow a tree hierarchy structure.

Figure 1-4 illustrates a simple topic hierarchy with the root level topic being
“NEWS”. The topic NEWS contains three child topics, called “Current Affairs”,
“Sports” and “Finance”. The topic Sports in turn has two topics under it, namely
“Baseball” and “Football”. The topic Finance has one subtopic, called “Stocks”. In
the publish/subscribe model, the publishers and subscribers can be decoupled.
 Chapter 1. Introduction and patterns 7

Figure 1-4 Publish/subscribe hierarchy

Any application can publish messages to a particular topic; for example, an
application publishing the result of a baseball game to the topic called “Baseball”.
Any application in turn can retrieve messages from a topic by subscribing to that
topic. In publish/subscribe models, publishers and subscribers can be added
dynamically, thus allowing the system to grow or shrink dynamically. Every
application that subscribes to a topic gets its own copy of the messages
published to that topic. The publish/subscribe model is facilitated by a software
component called message broker. The message broker maintains the
subscriptions to the topic hierarchy.

1.1.6 Request/reply
The request/reply pattern involves two processes: one consists of sending a
message and expecting a reply (in other words sending a request message), and
the other sends reply messages upon receiving a request message. The flow of
messages is initiated by the system or application when it sends out the request
message and then waits for the reply message. The responding side consumes
the request message, produces a reply message, and sends it back to the
initiating side. The flow is completed when the initiating side receives the reply
message.

In the request/reply model, there is a closer coupling of the systems, which
requires additional application logic to correlate between the request and reply
messages, and additional logic on the requesting side to handle delay and failure
in receiving a reply message. The request/reply pattern can be used with either
one-to-one (point-to-point) or publish/subscribe patterns. To facilitate the
request/reply pattern, MQSeries provides a facility to identify a request message
and its reply message with the use of a correlation ID. The correlation ID is set by
the application sending the request message. The application generating the
reply message copies the correlation ID from the request message on to the
reply message sent back to the application which originally sent the request
8 MQSeries Programming Patterns

message. The application that sent the request message can use the correlation
ID to map the reply message to the request message it sent earlier. Additionally,
you can also effectively use the temporary queues or temporary topics with the
request/reply pattern.

1.1.7 One-way datagram, or send-and-forget pattern
In this pattern the sending application sends messages without expecting any
reply from the receiving application. With this pattern, the sending application is
fully decoupled from the receiving application, allowing for a totally asynchronous
relationship between the sending system and the receiving system. The sending
system can continue processing without being hindered by the availability of the
receiving system.

With the assured delivery capability of MQSeries messaging, the sending system
can be sure that the messages would be delivered to the receiving system. In
adopting this pattern, business rules of failure of the receiving application should
be kept in mind. The one-way datagram or send-and-forget pattern can be used
with both point-to-point and publish/subscribe patterns. The send-and-forget
pattern is implemented in the one-to-one model by putting messages on a
specific queue. In the case of the publish/subscribe pattern, the send-and-forget
pattern is implemented by publishing messages to a specific topic.

Now that we have discussed these common message flow patterns, we will
move on to discuss the many programming choices available and how each one
relates to these patterns. We show how these various options are implemented,
along with example code wherever appropriate.

Although we cover some publish/subscribe patterns in each of the following
chapters, it is highly recommended that you follow this up by reading MQSeries
Publish/Subscribe Applications, SG24-6282, which can be downloaded from:

http://www.ibm.com/redbooks

This book discusses and fully documents all the steps involved in configuring the
programming tools and coding a real publish/subscribe application in detail.
 Chapter 1. Introduction and patterns 9

http://www.ibm.com/redbooks

10 MQSeries Programming Patterns

Chapter 2. Messaging and the APIs

In this chapter we discuss in general terms the programming choices that the
application programmer faces when deciding upon the most suitable
programming route to take. From brief overviews of the language choices, to the
programming models, we attempt to make the process of choosing the right
language easier and more straightforward.

We introduce the different programming interfaces supported by MQSeries for
applications development, transaction and system management.

2

© Copyright IBM Corp. 2002. All rights reserved. 11

2.1 Messaging, queuing and patterns
Much has been written about MQSeries and MQSeries programming over the
period since its introduction. Those documents provide the basis for some
excellent background reading for anyone using this book. In fact as a
prerequisite you should, as previously mentioned, read and make sure you fully
understand the book An Introduction to Messaging and Queuing, GC33-0805,
which is supplied with the MQSeries product. However, in this chapter we briefly
cover the basic concepts of what messaging is and how it fits together.

2.1.1 What is messaging?
Messaging is when systems communicate with each other using messages to
convey the information rather than communicating directly through the transport
mechanisms.

MQSeries defines four types of messages that can be used:

Datagram A simple message for which no reply is expected

Request A message for which a reply is expected

Reply A reply to a request message

Report A message that describes an event such as the occurrence of an
error

2.1.2 What is queuing?
Queuing is the mechanism by which messages are held until an application is
ready to process them. Queuing allows you to:

� Communicate between programs (which may each be running in different
environments) without having to write the communication code.

� Select the order in which a program processes messages.

� Balance loads on a system by arranging for more than one program to
service a queue when the number of messages exceeds a threshold.

� Increase the availability of your applications by arranging for an alternative
system to service the queues if your primary system is unavailable.
12 MQSeries Programming Patterns

2.1.3 What is message queuing?
Message queuing has been used in data processing for many years and is most
commonly used today in electronic mail. Without queuing, sending an electronic
message over long distances would require every node on the route to be
constantly available for forwarding messages, with the addressees to be logged
on and aware of the fact that you are trying to send them a message.

In a queuing system, messages are stored at intermediate nodes until the
system is ready to forward them. At their final destination, they are stored in an
electronic mailbox until the addressee is ready to read them. Even so, many
complex business transactions are processed today without queuing. In a large
network, the system might be maintaining many thousands of connections in a
ready-to-use state. If one part of the system suffers a problem, many parts of the
system become unusable.

Message queuing can be thought of as being electronic mail for programs. In a
message-queuing environment, each program from the set that makes up an
application suite is designed to perform a well-defined, self-contained function in
response to a specific request. To communicate with another program, a
program must put a message on a predefined queue. The other program
retrieves the message from the queue, and processes the requests and
information contained in the message. So message queuing is a style of
program-to-program communication.

2.2 Transaction management
In a human context, a transaction is an action, or group of actions, that takes
place between two people. In a computer context, transactions relate to a group
of activities that may need to access multiple resources and perform some kind
of operation and updates on them. These sets of activities must be completed
together so that if any of them were to fail, then the whole set would need to be
undone or backed out.

Transactions have four main properties, called the ACID properties. ACID stands
for Atomicity, Consistency, Isolation, and Durability.

Atomicity A transaction must execute completely or not at all. All the
activities in the transaction must be completed successfully. If
any fails to complete, then the transaction is aborted and all the
activities already executed are rolled back. If all the activities
complete successfully, then the transaction is complete and all
the operations and updates to the resources are committed.
 Chapter 2. Messaging and the APIs 13

Consistency Once a transaction has been executed, whether if it has been
completed successfully or not, the underlying resources used
during the transaction must be consistent.

Isolation A transaction must be able to execute without the interference of
other processes or transactions. Any intermediate states are
transparent to other transactions, so multiple transactions can be
executed serially.

Durability Any changes made to the underlying resources during a
committed transaction must be stored in a persistent data store
and should survive software or hardware failures.

In the simplest case, the whole transaction is committed or backed out once it is
finished, but in many cases you might want to synchronize data changes at other
points within the transaction. Those points are called syncpoints, and the period
of processing between two syncpoints is called the unit of work. Units of work
can contain one or many different operations.

Syncpoint coordination is the process by which units of work are either
committed or backed out, thereby maintaining data integrity. This gives the
programmer greater control over the transaction, making it much easier during
any problem-solving process.

2.2.1 Single-phase and two-phase commits
Transactions can be local to a single specific resource manager or they can
involve multiple resource managers. In the latter case, a transaction manager is
needed to coordinate the transaction in the different resource managers.

Within a local transaction scope, a single-phase commit can be applied. A
single-phase commit process is one in which the program can commit changes
without coordinating its changes with other resource managers.

On the other hand, if changes made to one resource need to be coordinated with
updates to other resource managers, for example with a relational database
such as DB2, we want all the resources to be committed or backed out together.
This is known as a two-phase commit.

When a two-phase commit is needed, the transaction manager must be able to
coordinate the transaction with the different resource managers. In order to do
that, the resource manager must have a common transaction interface. The XA
specification defines a set of functions that allows the coordination between
different resource managers.

The two-phase commit protocol operates in two different phases to determine
whether the transaction should be committed or rolled back.
14 MQSeries Programming Patterns

In the first phase, called the prepare phase, the transaction manager evaluates
the status of each of the resource managers involved in the transaction. All the
resource managers must be ready to commit the transaction before the
transaction manager can continue with the next phase.

Once the transaction managers have received an answer from all the transaction
managers, the second phase or commit phase concludes the transaction. Here
the transaction manager instructs the resource managers to commit the
transaction if all have agreed, or to roll back if at least one disagrees.

Rollback is where the transaction manager has been unsure about the state of
any one of the participating resources. The transaction would have been in an
in-doubt state, and so any changes that may have been in the process of being
made need to be resolved by returning them to their original status.

2.2.2 XA specification
The XA specification is a portion of the XA Distributed Transaction Processing
model of the Open Group organization. The XA interface is a bidirectional
interface, which consist of a set of UNIX-type APIs.

Along with the functions it provides, the XA specification provides a switch data
structure that contains the resource manager name, non-null pointers to the
resource manager’s APIs, a flag, and a version word. This way, programs using
the resource manager APIs access the function through the pointers provided in
this structure rather than using the actual function names, or having to link to the
service program that actually contains the functions. This gives an additional
level of portability, since the resource manager can be changed without the
programmer having to recompile the application.

For more detailed information about this API, please refer to the X/Open
publications available. Information can be found at:

http://www.opengroup.org

2.2.3 Transactions in MQSeries
In the case of a messaging system such as MQSeries, transaction management
allows the programmer to assure that a set of messages have been sent in an
all-or-nothing way: if there is a problem delivering any of the messages in a
transaction, the whole set of messages can be rolled back and some kind of
corrective action can be taken. If messages were retrieved from a queue during
that unit of work, those messages are restored to the queue by MQSeries when
the transaction is rolled back.
 Chapter 2. Messaging and the APIs 15

http://www.opengroup.org

Within a transaction, if messages are put onto a queue, they are only visible to
other applications after the whole transaction has been committed. Likewise, if
within a transaction messages are destructively read from a queue, they are not
be deleted from the queue until the transaction is actually committed so that no
other program would be able to retrieve them in the meantime.

Since messages in a unit of work are returned to the queue when a backout
occurs, the program processing those messages can get into an infinite loop,
processing the same unit of work over and over again and simply finding the
same problem every time.

To avoid this situation, MQSeries keeps track of the number of times it has been
backed out in the BackoutCount attribute. This way if the message repeatedly
causes the unit of work to fail, this attribute value will eventually exceed the value
in the BackoutThreshold, which is set when the queue is defined. The application
can decide to remove the message from the unit of work and put it onto another
queue, or take some other corrective action so the unit of work can commit as
planned.

We can use single-phase or two-phase commit in MQSeries depending on the
requirements of the application, which means that MQSeries queuing functions
can be brought within the scope of a unit of work, managed by MQSeries or other
transaction managers such as CICS, IMS, Encina, Tuxedo and Top End.

If the transaction coordination is going to be made by MQSeries, units of work
can either be local to the MQSeries queue manager or global, involving other
resource managers such as relational databases.

2.3 Message grouping and segmentation
Message grouping is a facility that allows the programmer to add some grouping
logic to the messages that are being sent through a queue without having to
introduce that logic in the messages themselves. This way the application
processing those messages can concentrate on the actual data to be processed
and leave the group management to MQSeries.

There are two main reason for using grouping:

� The messages in the given group have to be processed in the correct order.
� Each of the messages in a group need to be processed in a related way.
16 MQSeries Programming Patterns

Logical order means that the messages belonging to a group are read in their
correct order even if some other message or messages arrive onto the queue in
the middle of the group. That, of course, requires the program to identify the
message group it is going to be working with, which is done by giving the
MQGET call the message group identification in the MQMO structure.

MQSeries also allows the program to require the whole group to be available
before a get operation can be done on the first message of the queue (the first
message of the queue must be present to be able to browse the group at all). By
doing this, the program developer can concentrate on the business logic and
leave the group ordering handling to the queue manager.

On the other hand, even if group ordering is not an issue, the group identification
can be helpful in terms of keeping together a conceptual group of information
that your system uses, so messages in a given group can be given a specific
treatment later on.

MQSeries provides another level of message grouping called segmentation. The
purpose of segmentation is to give the programmer the opportunity to split a
message into multiple segments. This is mostly used when messages are larger
than the maximum configurable size of a message either in MQSeries
configuration or in the program itself.

With segmentation, large messages can be split into smaller messages so that
they can be read from the queue into smaller buffers. This gives the programmer
the opportunity to work with more manageable pieces of information before the
whole message has arrived. If the whole message has to be received before
some work can be performed on it, you can use a transactional model so that the
message can be committed after all the parts are available on the queue. The
same thing can be done with grouping. A segment of a message is identified by
the GroupID, MsgSeqNumber, and Offset.

2.4 MQSeries programming interfaces
We now move on to give a brief overview of the key features of the many
programming choices that an MQSeries application programmer can select from.
Each one of these choices are described in much more detail in subsequent
chapters.
 Chapter 2. Messaging and the APIs 17

2.4.1 MQI
The MQSeries Message Queue Interface (MQI) is an extremely rich
programming interface that gives the programmer access to all the facilities of
the MQSeries messaging platform along with detailed control over the messages
and the way they behave.

The MQI calls allow you to:

� Connect programs to, and disconnect programs from, a queue manager

� Open and close objects such as queues, queue managers, namelists, and
processes

� Put messages on queues

� Get (remove) messages from a queue, or browse them (leaving them on the
queue)

� Inquire about the attributes of MQSeries objects, and set some of the
attributes of queues

� Commit and back out changes made within a unit of work, in environments
where there is no natural syncpoint support, for example OS/2 and UNIX
systems

� Coordinate queue manager updates and updates made by other resource
managers

The MQI API provides data structures and types to be used as the input and
output of the calls. It also provides a large set of named constants that can be
used to modify the options given in those data structures. The MQI is consistent
across all the supported platforms so the applications can be moved to a different
platform without code modifications.

2.4.2 AMI
The Application Message Interface (AMI) provides programmers with a very
simple interface that can be used to work with queue manager objects. With the
AMI, the programmer doesn’t need to have in-depth knowledge of all the MQI
calls, but instead can concentrate on the business logic of the application. This
means fewer programming errors and more flexibility to address business and
technology changes. AMI reduces the amount of code that is required to write a
new application

The AMI’s key features are:

� Reduced (application) administration overhead
� Function moved from application to AMI
� Support for different application programming models
18 MQSeries Programming Patterns

� Cross-platform and multiple language (object-oriented and procedural)
support

� Simple API calls

2.4.3 C++
The C++ MQSeries interface is an extension of the MQI API. It gives the
programmer an object-oriented approach to the messaging interface in
MQSeries.

The C++ MQI provides all the features available in the MQI API, such as getting,
putting and browsing messages. It also allows you to inquire and set object
options. Additionally, it provides the following features:

� Automatic initialization of MQSeries data structures
� Just-in-time queue manager connection and queue opening
� Implicit queue closure and queue manager disconnection
� Dead-letter header transmission and receipt
� IMS Bridge header transmission and receipt
� Reference message header transmission and receipt
� Trigger message receipt
� CICS Bridge header transmission and receipt
� Work header transmission and receipt
� Client channel definition

2.4.4 MQSeries automation classes for ActiveX
The MQSeries automation classes for ActiveX is a set of ActiveX components
that provide classes. The MQSeries automation classes for ActiveX are intended
to be used by designers and programmers who want to develop MQSeries
applications that are able to run on the Windows platform. The classes can then
be easily integrated into any application, because the MQSeries objects that are
needed can be coded using the native syntax of the implementation language.
The overall design of the application is the same as for any MQSeries
application.

2.4.5 Java
The MQSeries classes for Java (MQSeries base Java) allows a programmer to
write an application or applet in the Java programming language to:

� Connect to MQSeries as an MQSeries client
� Connect directly to an MQSeries server
 Chapter 2. Messaging and the APIs 19

MQSeries base Java enables Java applets, applications, and servlets to issue
calls and queries to MQSeries. The programmer can choose to connect directly
to an MQSeries server or to connect to MQSeries as an MQSeries client. This
gives access to mainframe and legacy applications, typically over the Internet,
without necessarily having any other MQSeries code on the client machine.

In addition, applications written using the MQSeries classes for Java may realize
a significant cost savings in an environment where a large number of desktops
need to be periodically updated with the latest version of the software. This is
because once the byte code is initially downloaded onto the user’s machine, the
latest version of the software is automatically downloaded each time the software
is subsequently used.

2.4.6 JMS
The Java Message Service or JMS is the standard API for messaging in the
same way that the JDBC API is for databases. The JMS Specification (1.0.2)
was developed by Sun Microsystems with the active involvement of IBM and
other enterprise messaging vendors, transaction processing vendors and
RDBMS vendors. JMS provides a common model for Java programs to interact
with messaging systems performing various operations against the messaging
systems objects. The common operations that a program uses against a
messaging systems’s object are create messages, send messages, receive
messages, and read messages from the enterprise messaging system. JMS
provides a common way for programs being developed in Java to access these
messaging systems.

Now that we have covered the various choices from a high level, we move on to
discuss each one in turn, along with real programming examples.
20 MQSeries Programming Patterns

Part 2 The APIs

Having discussed and explained in overall terms what programming choices are
available and what the programming models are, we now show how these
various options are implemented, providing sample code wherever appropriate.

Part 2
© Copyright IBM Corp. 2002. All rights reserved. 21

22 MQSeries Programming Patterns

Chapter 3. Programming with MQI

In this chapter, we discuss the Message Queue Interface (MQI) API. This is the
basic rich programming interface provided with MQSeries for all its supported
platforms and provides the most comprehensive set of operations.

We introduce some of the basic concepts associated with the MQSeries
application development process in general, since this API is the source of all the
other available APIs.

Later we explain how to perform MQSeries operations such as:

� Connecting and disconnecting from a queue manager
� Opening and closing queue objects
� Sending, browsing and getting messages
� Inquiring about and setting object attributes
� Transaction management
� Message grouping

Finally we explore the implementation of the programming patterns previously
discussed and explained in Chapter 1, “Introduction and patterns” on page 3.

3

© Copyright IBM Corp. 2002. All rights reserved. 23

3.1 Overview
The Message Queue Interface or MQI is a programming interface that gives the
programmer access to all the facilities of the MQSeries messaging platform and
gives full and detailed control over the messages and the way they flow.

The MQI calls allow you to:

� Connect programs to, and disconnect programs from, a queue manager

� Open and close objects (such as queues, queue managers, namelists, and
processes)

� Put messages on queues

� Retrieve messages from a queue, or browse them (leaving them on the
queue)

� Inquire about the attributes of MQSeries objects, and set some of the
attributes of the queues

� Commit and back out changes made within a unit of work, in environments
where there is no natural syncpoint support, for example, OS/2 and UNIX
systems

� Coordinate queue manager updates and updates made by other resource
managers

The MQI provides a set of calls or functions to perform these operations, along
with data structures and types to be used as the input and output of the calls. It
also provides a large set of named constants that can be used to modify the
options given in those data structures. Data structures can also be initialized with
the default values provided by the API in the form of named constants.

The MQI is consistent across all the supported platforms so the applications can
be moved to a different platform without code modifications, although this might
require the programmer to add some logic to assure portability. For example:

#ifdef _OS2
OS/2 specific code

#else
generic code

#endif

MQI programs can run in a server or client environment. Some restrictions apply
when the program is to be used in a client environment, since the connection to
the queue manager cannot be in binding mode.
24 MQSeries Programming Patterns

Additionally, some environment variables are required in a client configuration so
the application can find the MQSeries server. Please refer to MQSeries Clients,
GC33-1632, for detailed information about how to set up a client environment.

3.2 Platforms and languages
These are the platforms and languages supported by MQI:

� For MQSeries for MVS/ESA:

– COBOL
– Assembler language
– C
– PL/I

� For MQSeries for AS/400:

– RPG
– COBOL
– C
– C++

� For MQSeries for AT&T GIS UNIX, MQSeries for Digital OpenVMS,
MQSeries for SINIX and DC/OSx, and MQSeries for SunOS:

– COBOL
– C

� For MQSeries for HP-UX and MQSeries for Sun Solaris:

– COBOL
– C
– C++

� For MQSeries for AIX, MQSeries for OS/2 Warp, and MQSeries for Windows
NT:

– COBOL
– C
– C++
– PL/I

� For MQSeries for Tandem NonStop Kernel:

– COBOL
– C
– TAL

� For MQSeries for Windows:

– C
– Visual Basic
 Chapter 3. Programming with MQI 25

3.3 Libraries and stub programs
These are the libraries and stub programs supported by MQI.

MQSeries for AS/400
In MQSeries for AS/400, you must bind your ILE C/400 programs and RPG/400
static calls to the supplied AMQZSTUB service program.

MQSeries for Windows
In MQSeries for Windows, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

� MQM16.LIB server for 16-bit C
� MQM.LIB server for 32-bit C
� MQM16.LIB server for 16-bit Visual Basic
� MQMSTD.LIB server for 32-bit Visual Basic

MQSeries for Windows NT
In MQSeries for Windows NT, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system:

� MQM.LIB server for 32-bit C
� MQIC.LIB client for 16-bit C
� MQIC32.LIB client for 32-bit C
� MQMXA.LIB static XA interface for C
� MQMCICS.LIB CICS for Windows NT V2 exits for C
� MQMCICS4.LIB Transaction Server for Windows NT, V4 exits for C
� MQMZF.LIB installable services exits for C
� MQMCBB.LIB server for 32-bit IBM COBOL
� MQMCB32 server for 32-bit Micro Focus COBOL
� MQICCBB.LIB client for 32-bit IBM COBOL
� MQICCB32 client for 32-bit Micro Focus COBOL
� MQMENC.LIB dynamic XA interface in C for Encina
� MQMTUX.LIB dynamic XA interface in C for Tuxedo

MQSeries for AIX
In MQSeries for AIX, you must link your program to the MQI library files supplied
for the environment in which you are running your application, in addition to
those provided by the operating system.

In a non-threaded application, these are as follows:

� libmqm.a server for C
26 MQSeries Programming Patterns

� libmqic.a client for C
� libmqmzf.a installable service exits for C
� libmqmxa.a XA interface for C
� libmqmcbrt.o MQSeries runtime library for Micro Focus COBOL support
� libmqmcb.a server for COBOL
� libmqicb.a client for COBOL

In a threaded application, these are as follows:

� libmqm_r.a server for C
� libmqmzf_r.a installable service exits for C
� libmqmxa_r.a XA interface for C
� libmqmxa_r.a for Encina

MQSeries for HP-UX
In MQSeries for HP-UX, you must link your program to the MQI library files
supplied for the environment in which you are running your application, in
addition to those provided by the operating system.

In a non-threaded application, these are as follows:

� libmqm.sl server for C
� libmqic.sl client for C
� libmqmzf.sl installable service exits for C
� libmqmxa.sl XA interface for C
� libmqmcbrt.o MQSeries runtime library for Micro Focus COBOL support
� libmqmcb.sl server for COBOL
� libmqicb.sl client for COBOL

In a threaded application, these are as follows:

� libmqm_r.sl server for C
� libmqmzf_r.sl installable service exits for C
� libmqmxa_r.sl XA interface for C

MQSeries for Sun Solaris
In MQSeries for Sun Solaris, you must link your program to the MQI library files
supplied for the environment in which you are running your application in addition
to those provided by the operating system. These are as follows:

� libmqm.so server for C
� libmqmzse.so for C
� libmqic.so client for C
� libmqmcs.so client for C
� libmqmzf.so installable service exits for C
� libmqmxa.a XA interface for C
 Chapter 3. Programming with MQI 27

3.4 Architectural model
MQI architecture is a simple, straightforward implementation of the different
features available in MQSeries.

The different calls directly refer to a basic MQSeries operation such as getting
messages from a queue or putting messages to a queue. These calls can be
grouped based on their functionality as follows:

� Connecting to and disconnecting from a queue manager:

MQCONN, MQCONNX, and MQDISC

� Open and close an MQSeries object, such as a queue:

MQOPEN and MQCLOSE

� Put one or multiple messages on a queue:

MQPUT and MQPUT1

� Browse or remove messages from a queue:

MQGET

� Inquire about the attributes of an object:

MQINQ

� Set some of the queue attributes at runtime:

MQSET

� Manage local or distributed transactions:

MQBEGIN, MQCMIT, and MQBACK

The different options and basic information required to perform these operations
can be supplied using the data structures and elementary data types provided by
the API.

These are the MQI data structures:

� MQBO (Begin options)

Specifies options for the MQBEGIN call (MQSeries Version 5 products only).

� MQCNO (Connect options)

Specifies options for the MQCONNX call (MQSeries Version 5 products only).

� MQDH (Distribution header)

Describes the data that is present in a message on a transmission queue
when that message is a distribution-list message (MQSeries Version 5
products and MQSeries for AS/400 only).
28 MQSeries Programming Patterns

� MQGMO (Get message options)

Specifies options for the MQGET call.

� MQMD (Message descriptor)

Provides control information for a message you are putting on (using MQPUT
or MQPUT1) or getting from (using MQGET) a queue.

� MQMDE (Message descriptor extension)

In conjunction with an MQMD Version 1, this contains grouped message and
segmentation information that would normally be held in the MQMD Version 2
(MQSeries Version 5 products and MQSeries for AS/400 only).

� MQOD (Object descriptor)

Identifies the object you want to work with when using MQOPEN.

� MQOR (Object record)

Identifies the destinations you want to work with in a distribution list
(MQSeries Version 5 products and MQSeries for AS/400 V4R2 only).

� MQPMO (Put message options)

Specifies options for the MQPUT and MQPUT1 calls.

� MQPMR (Put-message record)

Contains specific information relating to the individual destinations included in
a distribution list (MQSeries Version 5 products and MQSeries for AS/400
V4R2 only).

The following structures are used for special purposes:

� MQDLH (Dead-letter header)

Defines the format of the header of messages put on the dead-letter
(undelivered-message) queue (not supported on MQSeries for Windows
V2.0).

� MQRMH (Reference message header)

Defines the format of a reference message (MQSeries Version 5 products
and MQSeries for AS/400 only).

� MQTM (Trigger message)

Defines the format of a trigger message.

� MQTMC (Trigger message)

Defines the format of a trigger message as a set of character fields
(MQSeries for AS/400 only).

� MQTMC2 (Trigger message)
 Chapter 3. Programming with MQI 29

Defines the format of a trigger message including the queue manager name
(MQSeries for MVS/ESA, MQSeries on UNIX systems, MQSeries for OS/2
Warp, and MQSeries for Windows NT only).

� MQXP (Exit parameter block) structure

Used to communicate with the API-crossing exit (MQSeries for MVS/ESA
only).

� MQXQH (Transmission queue header)

Defines the format of the header that is added to messages put on a
transmission queue.

For C and Visual Basic, MQI provides the following elementary data types:

MQBYTE A single byte of data

MQBYTEn A string of 16, 24, 32, or 64 bytes

MQCHAR One single-byte character

MQCHARn A string of 4, 8, 12, 16, 20, 28, 32, 48, 64, 128, or 256
single-byte characters

MQHCONN A connection handle (this data is 32 bits long)

MQHOBJ An object handle (this data is 32 bits long)

MQLONG A 32-bit signed binary integer

PMQLONG A pointer to data of type MQLONG

3.5 Programming with MQI
As explained in previous sections, the MQI is a set of functions and data types
that allow the programmer to send and receive messages. The different functions
accept input/output parameters, in order to be compatible among all the
languages listed.

Generally, an MQI program applies a simple flow of operations as shown in
Figure 3-1 on page 31.

1. The program must first connect to a queue manager, using the MQCONN
call.

2. Once a connection has been successfully established, one or many objects
can be opened using the MQOPEN call.

3. Any number of operations, such as get or put operations, can be performed
on each object until the object is no longer needed.

4. Then the object can be closed using the MQCLOSE call.
30 MQSeries Programming Patterns

5. The queue manager connection is discarded using the MQDISC call.

Figure 3-1 MQI program sequence

We first review some of the common elements of all these calls, then we take a
look at the calls needed to connect and disconnect from a queue manager and
how to open and close the MQSeries objects

Once we have done that, we review the four basic operations that can be
performed with the MQI:

� Putting messages on a queue
� Getting messages from a queue
� Browsing messages on a queue
� Inquiring and setting object attributes

Any number of basic operations can be performed within the open/close calls.
 Chapter 3. Programming with MQI 31

We won’t provide the detail specification of each function call, since this is not the
purpose of this redbook, but you can refer to the Application Programming
Reference and Application Programming Guide that comes with the MQSeries
product. Here we try to present a brief description of the possibilities you have
with this API so you can find out if your requirements can be solved with this API
and how.

3.5.1 Basic API concepts
The basic concepts of the MQI API are discussed in the following sections.

Parameters common to all calls
There are two types of parameters common to all calls:

� Handles

These are returned by the queue manager connection and open queue calls
and are then used as input parameters for the subsequent calls.

� Return codes

Two return codes are common to all the calls: a completion code and a
reason code.

– The completion code specifies whether the call was completed
successfully (with an MQCC_OK) or if a failure occurred (with an
MQCC_FAILED). It can also return an intermediate state,
MQCC_WARNING, indicating partial success.

– The reason code is MQCC_NONE if the completion code is MQCC_OK. If
not, some other value is returned explaining the cause of the warning or
failure reported in the completion code.

Retrieving messages in order
Messages in a queue can be scanned in either physical or logical order. This
ordering applies if there is a get or browse request made to the queue where the
messages are held.

Physical ordering is related to the way messages are received by the queue. The
first message to arrive in the queue is the first message to be presented during a
get or browse operation. Physical ordering gives us a FIFO (First-in/First-out) or
FIFO within Priority sequence of the messages on the queue.

If FIFO within Priority ordering is used, the messages with the higher priority
appears first in the queue, even if they arrive after a lower priority message has
arrived.
32 MQSeries Programming Patterns

This can cause some messages to be ignored when a program is getting or
browsing messages on a queue. This is because once a message with a lower
priority has been reached and another message with a higher priority appears in
the queue, that message is put before the current message (pointer) so the
application won’t be able to see it until the queue is closed and re-opened, or an
MQOGET is issued with the MQ00_BROWSE_FIRST option.

For example, let’s take the following message sequence sent to a Priority order
queue:

1. Message 1, priority 1
2. Message 2, priority 2
3. Message 3, priority 1

Let’s say that an application is browsing messages on that queue. The program
first sees the messages in this order:

1. Message 2, priority 2
2. Message 1, priority 1 (the browse cursor is here)
3. Message 3, priority 1

If the browse cursor of the program is pointing to Message 1 when a Message 4
appears with priority 2, then the order of the queue will be:

1. Message 2, priority 2
2. Message 4, priority 2
3. Message 1, priority 1 (the browse cursor is here)
4. Message 3, priority 1

In this case, the program is not able to see the Message 4 until it re-opens the
queue or moves the browse cursor to the top of the queue using the
MQOO_BROWSE_FIRST option.

The logical order, on the other hand, is mainly related to message grouping and
segmentation. In this case, messages are presented in the queue grouped by
GroupId and the groups are ordered depending on the physical position of the
first message of the group. Message segments have the same behavior.

For example, let’s take the following sequence of messages sent to a queue:

1. Logical message 1 (not last) of group 123
2. Logical message 1 (not last) of group 456
3. Logical message 2 (last) of group 456
4. Logical message 2 (not last) of group 123
5. Logical message 3 (last) of group 123

This messages appear to the application in the following sequence:

1. Logical message 1 (not last) of group 123
 Chapter 3. Programming with MQI 33

2. Logical message 2 (not last) of group 123
3. Logical message 3 (last) of group 123
4. Logical message 1 (not last) of group 456
5. Logical message 2 (last) of group 456

Here, the same problem explained with the FIFO within Priority can be found,
since parts of a message group can arrive onto the queue after the browse
cursor has been positioned to the next message group.

3.5.2 Connecting to the queue manager
To start working with MQSeries using this interface, you should first connect to a
queue manager using one of the two available connection calls: MQCONN and
MQCONNX. The syntax would be as follows:

As input to MQCONN we must supply the name of the queue manager, or a null
starting string if we want to open the default queue. Additionally, the MQCONNX
call allows you to specify some options regarding the binding method (whether
the connection is binding or non-binding).

The output from these calls are:

� The result codes (completion and reason code).
� A connection handle to the queue manager.

The scope of a connection call is generally the thread that issues the call. Refer
to the Application Programming Guide for detailed information about the scope
considerations on each platform.

The following code fragment shows how to connect to a queue manager using
the C MQI:

MQHCONN Hcon; /* connection handle */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */
char QMName[50]; /* queue manager name */

strcpy(QMName,”SampleQM”);

// Connecting to the Queue Manager
MQCONN(QMName, /* queue manager */
 &Hcon, /* connection handle */
 &CompCode, /* completion code */

MQCONN (QMgrName, Hconn, CompCode, Reason)

MQCONNX (QMgrName, ConnectOpts, Hconn, CompCode, Reason)
34 MQSeries Programming Patterns

 &CReason); /* reason code */

if (CompCode == MQCC_FAILED) {
printf("MQCONN failed with reason code %ld\n", CReason);

}

3.5.3 Opening MQSeries objects
There are four types of MQSeries objects that can be opened:

� Queue
� Namelists (in MQSeries for MVS/ESA)
� Process definition
� Queue manager

To open any of these objects we use the MQOPEN call:

This call receives:

� A connection handle as returned by the MQCONN call.

� A description of the object we want to open, in the form of an object descriptor
(MQOD) structure.

� One or more options that control the action of the call.

The output from this call is:

� The result codes (completion and reason code).

� An object handle that represents your access to the object.

� A modified object-descriptor structure, if the object opened was a dynamic
queue.

We focus on how to open a queue object in the next section. For more
information on how to open the other types of objects, please refer to the
Application Programming Guide.

Opening queues
In the MQI, the only available type of message container is a queue. Queues can
be either for output or input messages and apply to all the patterns described in
Chapter 1, “Introduction and patterns” on page 3.

There are three types of queue from a programmer perspective:

� Local queues

MQOPEN (Hconn, ObjDesc, Options, Hobj, CompCode, Reason)
 Chapter 3. Programming with MQI 35

� Remote queues
� Dynamic queue

Local and remote queues represent actual queues defined in the queue manager
from an administrative prospective. They differ mostly in the way the name of the
queue can be specified in the ObjectName field of the MQOD data structure.

A local queue’s name is the one specified in the local queue manager.

A remote queue’s name can be referred to by the name of the remote queue as
known by the local queue manager, or by the name in the remote queue
manager. If the name in the remote queue manager is used, then the
ObjectQMgrName field must specify either:

� The name of the transmission queue that has the same name as the remote
queue manager.

� The name of an alias queue object that resolves to the transmission queue
that has the same name of the remote queue manager.

The following code fragment shows how to open a local or remote queue using
the local queue manager name:

MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQLONG O_options; /* MQOPEN options */

// Setting Queue Name in the Object Descriptor data structure
strcpy(od.ObjectName, “SampleQueue“);

// Setting Open Options
O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
// Opening the assigned object
MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&CompCode, /* completion code */
&Reason); /* reason code */

// Here we use the reason code instead of the CompCode to show how
// this parameter can also be used to determine if any problem has occurred.
if (Reason != MQRC_NONE) {

printf("MQOPEN failed with reason code %ld\n", Reason);
}

36 MQSeries Programming Patterns

Dynamic queues are created on demand and are destroyed once they are no
longer in use. They are not created at an administrative level in MQSeries. For
example, they can be used in a request/response scenario where the requester
specifies a “reply-to” queue.

To create a dynamic queue, we use a template known as a model queue that is
created administratively, together with an MQOPEN call. The name of the
dynamic queue can be specified in the DynamicQName field of the MQOD
structure. The name can be specified in three ways:

� Giving a full name, not longer than 33 characters.

� Giving a partial name, in which case you can specify certain prefixes for the
queue name follow by an asterisk (*). The queue manager then generates a
unique name using the prefix you specified.

� Allowing the queue manager to generate a full name, by specifying an
asterisk (*) in the first character.

If the dynamic queue is created successfully, the object-descriptor structure is
returned with the actual name of the dynamic queue in the ObjectName field.
The following code fragment opens a dynamic queue and then prints its name:

strcpy(od.ObjectName, “SampleModel“);
strcpy(od.DynamicQName, “SampleDQ*“);

// Setting Open Options
O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
// Opening the assigned object
MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&CompCode, /* completion code */
&Reason); /* reason code */

// Here we use the reason code instead of the CompCode to show how
// this parameter can also be used to determine if any problem has occurred.
if (Reason != MQRC_NONE) {

printf(“MQOPEN failed with reason code %ld\n”, Reason);
} else {

printf(“THE newly open dynamic queue name is %s”, od.ObjectName);
}

Opening distribution lists
Distribution lists allow you to put a message to multiple queues in a single
MQPUT or MQPUT1 call.
 Chapter 3. Programming with MQI 37

In order to do this, the distribution list must be open using the MQOPEN call with
the following input parameters:

� A connection handle

� Generic information in the Object Descriptor structure (MQOD)

� The Object Descriptor structure (MQOD) must specify MQOD_VERSION_2
in the Version field and the number of Object Record structures (which is the
same as the number of queues you want to open) must be specified in the
RecsPresent field.

� The name of each queue you want to open, using the Object Record structure
(MQOR).

The output of this call is:

� An object handle that represents your access to the distribution list.

� A generic completion code.

� A generic reason code.

� Response records (MQRR structure), containing the result codes (completion
and reason code) for each destination.

One MQOR record must be provided for each destination, as a combination of
the queue name and queue manager name.

The address of this array of destination queues can be specified in two ways:

� By using the offset field ObjectRecOffset, giving the offset of the first element
in the array from the start of the MQOD structure. This is common when using
COBOL, for example:

01 MY-OPEN-DATA.
02 MY-MOWD.

COPY CMQODV.
02 MY-MQOR-TABLE OCCURS 100 TIMES.

COPY CMQORV.
MOVE LENGTH OF MY-MQOD TO MQOD-OBJECTRECOFFSET.

� By using the pointer field ObjectRecPtr, giving the address of the array of
MQOR records. This is the usual approach in C, for example:

MQOD MyMqod;
MQOR MyMqor[NUMBER_OF_DESTINATIONS];
MyMqod.ObjectRecPtr = MyMqor;

The MQRR structure contains the completion and reason code for a specific
destination in the distribution list. If any of the destinations fail to open, this
MQRR array allows us to recognize the queue with the problem and take some
corrective action. See Example 3-1.
38 MQSeries Programming Patterns

Example 3-1 Opening distribution lists

// In this example the number of queues is constant but it can be defined as a
//variable value depending on the application needs.
#define NumQueues /* set the number of queues */

MQLONG Index ; /* Index into list of queues */
PMQRR pRR=NULL; /* Pointer to response records */
PMQOR pOR=NULL; /* Pointer to object records */

// These two arrays are used to simplify this example. The names of the queues
and queue manager can be taken from any available resource.
char queueNames[MQ_Q_NAME_LENGTH][NumQueues];
char queueMNames[MQ_Q_MGR_NAME_LENGTH][NumQueues];

// Allocating the response and object records arrays.
pRR = (PMQRR)malloc(NumQueues * sizeof(MQRR));
pOR = (PMQOR)malloc(NumQueues * sizeof(MQOR));

// Setting the queue and queue manager names in the PMQOR record array.
for(Index = 0 ; Index < NumQueues ; Index ++) {

strncpy((pOR+Index)->ObjectName,
queueNames[Index],
(size_t)MQ_Q_NAME_LENGTH);

strncpy((pOR+Index)->ObjectQMgrName,
queueMNames[Index],
(size_t)MQ_Q_MGR_NAME_LENGTH);

}

// Setting values in the Object Descriptor data structure.
od.Version = MQOD_VERSION_2 ;

od.RecsPresent = NumQueues ; /* number of object/resp recs */
od.ObjectRecPtr = pOR; /* address of object records */
od.ResponseRecPtr = pRR ; /* Number of object records */
O_options = MQOO_OUTPUT /* open queue for output */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

// Opening the distribution list. The queue manager connection
// must be established before opening the distribution list.
MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&CompCode, /* MQOPEN completion code */
&Reason); /* reason code */

More details about how these structures are used can be found in the Application
Programming Guide.
 Chapter 3. Programming with MQI 39

Some other options available when opening a queue are considered in their
specific context in the following sections.

3.5.4 Closing the MQSeries object
To close an MQSeries object we use the MQCLOSE call.

This call receive the following input:

� A connection handle.
� The handle of the object we want to close.
� The close options.

The output of this call is:

� The result codes (completion and reason code).
� The object handle, reset to the value MQHO_UNUSABLE_HOBJ.

Unless you are closing a permanent dynamic queue, the close options will be
MQCO_NONE.

Typically a dynamic queue is deleted once the program that created it calls an
MQCLOSE for that queue, but in the case of permanent dynamic queues, they
can be retained by the queue manager or deleted depending on the options used
in the MQCLOSE call.

MQLONG C_options; /* MQCLOSE options */

C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

It is recommended that you close all MQSeries objects before the application
finishes.

3.5.5 Disconnecting from the queue manager
The final step in an MQSeries program is to disconnect from the queue manager.
This can be done with the MQDISC call.

MQCLOSE (Hconn, Hobj, Options, CompCode, Reason)

MQDISC (Hconn, CompCode, Reason)
40 MQSeries Programming Patterns

For this call you must provide the connection handle to the queue manager. After
the execution of this call, the connection handle will have an
MQHC_UNUSABLE_HCONN.

MQDISC(&Hcon, /* connection handle */
&CompCode, /* completion code */
&Reason); /* reason code */

3.5.6 Putting messages in a queue
To put a message in a queue the MQI API gives the programmer two options:

� Put multiple messages to an already open queue.
� Put a single message to a queue without having to explicitly open it.

To put multiple messages in a queue we can use the MQPUT call:

This call receives:

� A connection handle, as returned by the MQCONN call (in CICS on MVS/ESA
and AS/400 applications, it can also be the MQHC_DEF_HCONN constant).

� A queue handle, as returned by the MQOPEN call.

� A description of the message you want to put on the queue, in the form of a
message descriptor.

� Control information, in the form of a put-message options (MQPMO)
structure.

� The length of the data contained in the message.

� The message itself.

The output of this call is:

� The result codes (completion and reason codes).

� Updated message descriptor and options if the call was executed successful.

The queue must be opened with the MQOO_OUTPUT option, before any
number of calls to this function can be made.

The updated message descriptor will have the MsgId of the message, if the initial
structure requested that the queue manager generate a unique value for the
message.

MQPUT (Hconn, Hobj, MsgDesc, PutMsgOpts, BufferLength,
Buffer,CompCode, Reason)
 Chapter 3. Programming with MQI 41

The options structure returns with the name of the queue and the queue
manager to which the message was sent.

Example 3-2 shows how to send a message to the SampleQueue used before.

Example 3-2 MQPUT call

/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */
MQLONG messlen; /* message length */
char buffer[100]; /* message buffer */

// A connection handle must be obtained using the MQCONN call
// as shown in the previous sections.

MQCONN(...);

// Setting the target queue name in the Object Descriptor data structure.
strncpy(od.ObjectName, “SampleQueue”);

// Setting Open options, in this case MQOO_OUTPUT is require to execute
// the following MQPUT call.
O_options = MQOO_OUTPUT /* open queue for output */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN(Hcon,&od,O_options,&Hobj,&CompCode,&Reason);

// Validating the completion and reason codes
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}

if (CompCode == MQCC_FAILED) {
printf("unable to open queue for output\n");

}

// Preparing message data. In this example a simple message data
// will be sent. Message data can be prepared using other resources
// such as files, information in a database, etc.
strcpy(buffer, “Message data”);
messlen = strlen(buffer);
42 MQSeries Programming Patterns

// The following two statements are not required if the
// MQPMO_NEW_MSG_ID and MQPMO_NEW _CORREL_ID options are used.
memcpy(md.MsgId, /* reset MsgId to get a new one */

MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, /* reset CorrelId to get a new one */

MQCI_NONE, sizeof(md.CorrelId));

MQPUT(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
messlen, /* message length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQPUT ended with reason code %ld\n", Reason);
}

// The queue must be closed after the last message has been sent, and we must
// disconnect from the queue manager, as explained in previous sections.

Putting a single message on a queue
To put a single message without having to explicitly open a queue, we can use
the MQPUT1 call.

The MQPUT1 interface is the same as the MQPUT interface except for the
queue handle, where we must instead specify an object descriptor as specified in
the MQOPEN call. See Example 3-3.

Example 3-3 MQPUT1 call

/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

MQHCONN Hcon; /* connection handle */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */
MQLONG messlen; /* message length */
char buffer[100]; /* message buffer */

MQPUT1 (Hconn, ObjDesc, MsgDesc, PutMsgOpts, BufferLength,
Buffer,CompCode, Reason)
 Chapter 3. Programming with MQI 43

// A connection handle must be obtained using the MQCONN call
// as shown in the previous sections.

MQCONN(...);

// Setting the target queue name in the Object Descriptor data structure.
strncpy(od.ObjectName, “SampleQueue”);

// Preparing message data. In this example a simple message data
// will be sent. Message data can be prepared using other resources
// such as files, information in a database, etc.
strcpy(buffer, “Message data”);
messlen = strlen(buffer);

// The following two statements are not required if the
// MQPMO_NEW_MSG_ID and MQPMO_NEW _CORREL_ID options are used.

memcpy(md.MsgId, /* reset MsgId to get a new one */
MQMI_NONE, sizeof(md.MsgId));

memcpy(md.CorrelId, /* reset CorrelId to get a new one */
MQCI_NONE, sizeof(md.CorrelId));

MQPUT1(Hcon, /* connection handle */
&od, /* object descriptor */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
messlen, /* message length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE) {
printf("MQPUT ended with reason code %ld\n", Reason);

}

// The queue must be closed after the last message has been sent, and
// we must disconnect from the queue manager, as explained in previous
// sections.

Note: It is important to notice that this approach is useful if the amount of
operations that are actually going to use this function is small enough not to
consider the MQOPEN and MQPUT functions, since the overhead associated
with this single put function is much higher.
44 MQSeries Programming Patterns

Putting messages to multiple queue at once
You can also put messages to a distribution list. The message is sent to all the
queues in the distribution list with a single MQPUT or MQPUT1 call. In this case
the MQPUT call input parameters are:

� A connection handle.

� An object handle to the distribution list opened using MQOPEN call, as shown
previously in this chapter.

� A message descriptor structure (MQOD).

� General control information.

� Control information in the form of Put Message Records (MQPMR).

� The length of data contained within the message.

� The message itself.

The output of this call is:

� The result codes (completion and reason codes).

� Response records.

The MQPMR structure gives destination-specific information for some fields that
may differ from those already in the MQMD structure.

3.5.7 Getting messages from a queue
To get messages from a queue, we can use the MQGET call.

The input parameters for this call are:

� A connection handle.

� A queue handle.

� A description of the message we want to get from the queue in the form of an
MQMD structure.

� Control information in the form of a Get Message Options (MQGMO)
structure.

� The size of the buffer in which the message is going to be stored.

� The address of the buffer.

MQGET (Hconn, Hobj, MsgDesc, GetMsgOpts, BufferLength,
Buffer,DataLength, CompCode, Reason)
 Chapter 3. Programming with MQI 45

The output of this call is:

� The result codes (reason and completion codes).

� The message in the buffer specified, if the call completes successfully.

� The options structure, modified to show the name of the queue from which
the message was retrieved.

� The message descriptor structure, with the information of the message that is
retrieved.

� The actual length of the message.

To use this, the queue must be opened with the MQOO_INPUT_SHARED or
MQOO_INPUT_EXCLUSIVE options.

Messages are retrieved from the queue in either Physical or Logical order,
depending on the options used in the MQOPEN and MQGET calls. See
Example 3-4.

Example 3-4 MQGET call

/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */
MQBYTE buffer[101]; /* message buffer */
MQLONG buflen; /* buffer length */
MQLONG messlen; /* message length received */

// A connection handle must be obtained using the MQCONN call
// as shown in the previous sections.

MQCONN(...);

// Setting the target queue name in the Object Descriptor data structure.
strncpy(od.ObjectName, “SampleQueue”);

// Setting Open options, in this case MQOO_INPUT_AS_Q_DEF, MQOO_INPUT_SHARE
// or MQOO_INPUT_EXCLUSIVE is required to execute the following MQGET call.
O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon, &od,O_options,&Hobj,&CompCode,&Reason);

// Validating the completion and reason codes
46 MQSeries Programming Patterns

if (Reason != MQRC_NONE) {
printf("MQOPEN ended with reason code %ld\n", Reason);

}

if (CompCode == MQCC_FAILED) {
printf("unable to open queue for input\n");

}

// These options cause the MsgId and CorrelId to be replaced, so
// that there is no need to reset them before each MQGET if more than one
// get operation will be performed using the same get message options data
// structure. These options may not be available in all the environments.
gmo.Version = MQGMO_VERSION_2; /* Set Message Options version 2*/

// No match options will be used while scanning the queue
gmo.MatchOptions = MQMO_NONE;
gmo.Options = MQGMO_WAIT /* wait for new messages */

+ MQGMO_CONVERT; /* convert if necessary */
gmo.WaitInterval = MQWI_UNLIMITED; /* unlimited time for waiting */

buflen = sizeof(buffer) - 1; /* buffer size available for GET */

// Setting Encoding and CodedCharSetId in case some conversion is needed.
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;

// Perform the get operation
MQGET(Hcon,Hobj,&md,&gmo,buflen,buffer,&messlen,&CompCode,&Reason);

// report reason, if the call fails.
if (CompCode == MQCC_FAILED) {

printf("MQGET ended with reason code %ld\n", Reason);
} else {

// Display the message received
buffer[messlen] = '\0'; /* add terminator */
printf("message <%s>\n", buffer);

}
// The queue must be closed after the last message has been received, and
// you must disconnect from the queue manager, as explained in previous
// sections.

Getting a specific message from a queue
Messages can also be retrieved based on their description, as provided in the
MQMD structure.
 Chapter 3. Programming with MQI 47

The MsgId and CorrelId fields can be used to refer to a specific message, but
since they can be set by the application they might not be unique. In these cases
the first message that matches all the criteria provided is retrieved, and the call
can be repeated to get the rest of the messages.

If the MQMD structure version 2 is used, then the GroupId, MsgSeqNumber, and
Offset fields can be used, too.

A no-match value can be specified in any of this fields so the field is not
considered while searching for a match. Using the MQMD structure version 2, it
is also possible to declare which fields to use during the queue scan.

The following piece of code shows how to set a correlId as the message search
key before the MQGET call:

gmo.MatchOptions = MQMO_MATCH_CORREL_ID;
memcpy(md.CorrelId, myCorrelId, sizeof(md.CorrelId));

MQGET(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

The queues have some indexing capabilities to increase the performance of
these operations. The index field can be either MsgId or CorrelId, depending on
the value of the indexType attribute of the queue.

3.5.8 Advanced topics
The following sections cover browsing messages on a queue and inquiring about
and setting object attributes.

Browsing messages on a queue
To browse messages on a queue, we:

� Call MQOPEN to open the queue for browsing, specifying the
MQOO_BROWSE option.

� Call MQGET with the MQGMO_BROWSE_FIRST option to retrieve the first
message on the queue.
48 MQSeries Programming Patterns

� Repeatedly call MQGET with the MQGMO_BROWSE_NEXT option to step
through many messages, setting the MsgId and CorrelId null before any new
MQGET call.

� Close the queue using the MQCLOSE call.

When browsing messages, in the same way as when getting messages from a
queue, the messages are presented in either a physical or logical order.

Example 3-5 shows how to browse messages in a queue in physical order.

Example 3-5 Browse messages

/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */
MQBYTE buffer[101]; /* message buffer */
MQLONG buflen; /* buffer length */
MQLONG messlen; /* message length received */

// A connection handle must be obtained using the MQCONN call
// as shown in the previous sections.

MQCONN(...);

// Setting the target queue name in the Object Descriptor data structure.
strncpy(od.ObjectName, “SampleQueue”);

// Setting Open options, in this case MQOO_INPUT_AS_Q_DEF, MQOO_INPUT_SHARE
// or MQOO_INPUT_EXCLUSIVE is required to execute the following MQGET call.
O_options = MQOO_BROWSE /* open queue for browse, */
 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon,&od,O_options,&Hobj,&CompCode,&Reason);

// Validating the completion and reason codes
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}

if (CompCode == MQCC_FAILED) {
printf("unable to open queue for browse\n");

}

 Chapter 3. Programming with MQI 49

gmo.Version = MQGMO_VERSION_2; /* Set Message Options version 2*/

// No match options will be used while scanning the queue
gmo.MatchOptions = MQMO_NONE;

// Set the get message options. Here is where the MQGET method
// differs a destructive get from a browse get. We use the
// MQGMO_BROWSE_NEXT since the queue has just been opened and then
// the browse cursor is positioned in the beginning of the queue.
// If the queue had been used before, we can use MQGMO_BROWSE_FIRST for
// the first MQGET call and then MQGMO_BROWSE_NEXT for the rest of the calls.
gmo.Options = MQGMO_NO_WAIT /* don't wait for new messages */

+ MQGMO_BROWSE_NEXT /* browse messages in order */
+ MQGMO_ACCEPT_TRUNCATED_MSG; /* truncate longer message */

// Here we are giving a 100 bytes buffer to receive the message. If the
// message data is larger than 100 bytes then the message will be
// truncated since we give the MQGMO_ACCEPT_TRUNCATED_MSG option in the
// get message options structure. In this case a reason code of
// MQRC_TRUNCATED_MSG_ACCEPTED can be expected.
buflen = sizeof(buffer) - 1; /* buffer size available for GET */

// Setting Encoding and CodedCharSetId in case some conversion is needed.
while (CompCode != MQCC_FAILED) {
// Set encoding before each MQGET call in case any data conversion
// is required.

md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;

MQGET(Hcon,Hobj,&md,&gmo,buflen,buffer,&messlen,&CompCode,&Reason);

// report reason, if the call fails.
if (CompCode == MQCC_FAILED) {

printf("MQGET ended with reason code %ld\n", Reason);
} else {

// Display the message received
buffer[messlen] = '\0'; /* add terminator */
printf("message <%s>\n", buffer);

}
}

//The queue must be closed after the last message has been browsed, and you
//must disconnect from the queue manager, as explained in previous sections.

If you don’t know the size of the messages in the queue, you can use an MQGET
call with the following options to obtain the size of the message and then browse
or get it from the queue:
50 MQSeries Programming Patterns

� Either the MQGMO_BROWSE_FIRST or MQGMO_BROWSE_NEXT option.
� The MQGMO_ACCEPT_TRUCATED_MSG option.
� Buffer length of zero (0).

It returns the size of the message in the DataLength parameter.

Inquiring about and setting object attributes
To inquire about the attributes of an object, we can use the MQINQ call.
.

As input to this call, we must supply:

� A connection handle.

� An object handle, as returned by the MQOPEN call. The object open can be
any of the possible objects specified in 3.5.3, “Opening MQSeries objects” on
page 35.

� The number of selectors.

� An array of attribute selectors. The selectors can represent either integer
(MQIA_*) or character (MQCA_*) attributes, and can be specified in any
order.

� The number of integer attributes being inquired.

� An array of integer variables where the call returns the integer attributes
specified.

� The length of the character attributes buffer. The buffer should be at least the
sum of the length of all the character attributes inquired.

� The character buffer where the call puts the values of the character attributes
inquired.

The output for this call is:

� A set of integer attribute values copied into the array.

� The buffer in which character attributes are returned.

� The result codes (completion and reason codes).

A complete list of the attributes selectors can be found in the Application
Programming Reference.

MQINQ (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,
IntAttrs,CharAttrLength, CharAttrs, CompCode, Reason)
 Chapter 3. Programming with MQI 51

In the case of character attributes, the resulting buffer is filled with the attributes
values, one after the other, with a fixed length. If the actual value of any of these
attributes is smaller than the fixed length of the attribute, the rest of the space is
filled with blanks.

If any of the attributes requested for the object (in this case it is a queue) does
not apply to that type of queue, the space is filled with asterisks (*).

Example 3-6 shows how to inquire about the attributes of a queue:

Example 3-6 Inquire object attributes

MQOD odI = {MQOD_DEFAULT}; /* Object Descriptor (INQUIRE) */

MQHCONN Hcon; /* connection handle */
MQHOBJ Hinq; /* handle for MQINQ */
MQLONG O_options; /* MQOPEN options */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */
MQLONG Select[3]; /* attribute selectors */
MQLONG IAV[3]; /* integer attribute values */

// A connection handle must be obtained using the MQCONN call
// as shown in the previous sections.

MQCONN(...);

// Open named queue for INQUIRE
// Set the name of the queue object to inquire
strcpy(odI.ObjectName, “SampleQueue”);

O_options = MQOO_INQUIRE /* open to inquire attributes */
+ MQOO_FAIL_IF_QUIESCING;

MQOPEN(Hcon,&odI,O_options, /* open options */
&Hinq, /* object handle for MQINQ */
&CompCode, /* completion code */
&Reason); /* reason code */

// Validating the completion and reason codes
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}
if (CompCode == MQCC_FAILED) {

printf("unable to open queue for inquire\n");
} else {
Select[0] = MQIA_INHIBIT_GET; /* attribute selectors */
Select[1] = MQIA_CURRENT_Q_DEPTH;
52 MQSeries Programming Patterns

Select[2] = MQIA_OPEN_INPUT_COUNT;
MQINQ(Hcon, /* connection handle */

Hinq, /* object handle */
3L, /* Selector count */
Select, /* Selector array */
3L, /* integer attribute count */
IAV, /* integer attribute array */
0L, /* character attribute count */
NULL, /* character attribute array */
/* note - can use NULL because count is zero */
&CompCode, /* completion code */
&Reason); /* reason code */

if (CompCode == MQCC_OK) {
sprintf(reply, " has %ld messages, used by %ld jobs",IAV[1], IAV[2]);

strcat(buffer, reply);
if (IAV[0]) { /* if GET inhibited */

strcat(buffer, "; GET inhibited");
}
}

// The queue object must be closed, and we must disconnect
// from the queue manager, as explained in previous sections.

Setting object attributes
Only queue objects accept a set operation. To set attributes of a queue we use
the MQSET call.

The parameters for this call are the same of those in the MQINQ call. All of them
are input parameters except the completion code and reason code.

These are the attributes that can be set using the MQSET call:

� InhibitGet (but not for remote queues)
� DistList
� InhibitPut
� TriggerControl
� TriggerType
� TriggerDepth
� TriggerMsgPriority
� TriggerData

Example 3-7 shows how to inhibit put operations on a queue:

MQSET (Hconn, Hobj, SelectorCount, Selectors, IntAttrCount,
IntAttrs,CharAttrLength, CharAttrs, CompCode, Reason)
 Chapter 3. Programming with MQI 53

Example 3-7 Set object attributes

MQOD odS = {MQOD_DEFAULT}; /* Object Descriptor for SET */

MQHCONN Hcon; /* connection handle */
MQHOBJ Hset; /* handle for MQSET */
MQLONG O_options; /* MQOPEN options */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */
MQLONG Select[1]; /* attribute selector(s) */
MQLONG IAV[1]; /* integer attribute value(s) */

// A connection handle must be obtained using the MQCONN call
// as shown in the previous sections.

MQCONN(...);

// Open named queue for SET
strcpy(odS.ObjectName, “SampleQueue”);
O_options = MQOO_SET /* open to set attributes */

+ MQOO_FAIL_IF_QUIESCING;
MQOPEN(Hcon, /* connection handle */

&odS, /* object descriptor for queue */
O_options, /* open options */
&Hset, /* object handle for MQSET */
&CompCode, /* completion code */
&Reason); /* reason code */

/* prepare to report error if it failed */
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}
if (CompCode == MQCC_FAILED) {

printf("unable to open queue for set\n");
} else {

// Inhibit Put if the queue was opened successfully
Select[0] = MQIA_INHIBIT_PUT; /* attribute selector */
IAV[0] = MQQA_PUT_INHIBITED; /* attribute value */

MQSET(Hcon, /* connection handle */
Hset, /* object handle */
1L, /* Selector count */
Select, /* Selector array */
1L, /* integer attribute count */
IAV, /* integer attribute array */
0L, /* character attribute count */
NULL, /* character attribute array */
/* note - can use NULL because count is zero */
54 MQSeries Programming Patterns

&CompCode, /* completion code */
&Reason); /* reason code */

if (CompCode == MQCC_OK) {
strcat(buffer, " PUT inhibited");
messlen = strlen(buffer); /* length of reply */
md.MsgType = MQMT_REPLY;

} else {
md.MsgType = MQMT_REPORT;
md.Feedback = Reason; /* result of MQSET */

}

// The queue object must be closed, and we must disconnect
// from the queue manager, as explained in previous sections.

More details about the use of this function can be found in the Application
Programming Reference.

3.6 Transactions in MQI
Either local or global units of work can be started using the MQI API. Once
started, any unit of work is completed using MQCMIT or MQBACK calls.

A local unit of work is started when MQPMO_SYNCPOINT or
MQGMO_SYNCPOINT is coded on an MQPUT or MQGET call and an
MQBEGIN call has not been made, as follows:

MQPMO pmo;
pmo.Options = MQPMO_SYNCPOINT;
MQPUT(...);

Or:

MQGMO gmo;
gmo.Options = MQGMO_SYNCPOINT;
MQGET(...);

Every operation within the unit of work must have the MQPMO or MQGMO
options set as shown in the previous code fragment.

MQCMIT (Hconn, CompCode, Reason)

MQBACK (Hconn, CompCode, Reason)
 Chapter 3. Programming with MQI 55

A global unit of work starts when an MQBEGIN call is made. If a local unit of work
has already been started, the MQBEGIN call fails with an
MQRC_UOW_IN_PROGRESS reason.

The following pseudo-code fragment shows a distributed transaction including
basic get and put operation with some relational database operation:

MQBEGIN(...);

MQGET(...);

// Execute some relational database update
UPDATE tbl1 (f1,f2) VALUES (v1,v2);

MQPUT(...);

// If any operation fails the transaction is backed out.
if (CompCode != MQCC_OK) {

MQBACK(...);
} else {

MQCOMMIT(...);
}

3.7 Message grouping in MQI
As explained in Chapter 2, “Messaging and the APIs” on page 11, message
grouping lets us add some grouping logic to the messages without having to
code all that logic into the application. The grouping is managed by the queue
manager, and provides basic features such as ordering and group completion
control.

The group identification is introduced in the message descriptor structure
(MQMD) sent with the message, when using an MQPUT or MQPUT1 call.

Every message in the group must have the MQMF_MSG_IN_GROUP flag but
the last one, which has an MQMF_LAST_MSG_IN_GROUP flag instead. The
order of the messages in the group is stored in the MsgSeqNumber field of the
MQMD structure, which is generated automatically by the queue manager.

The following code fragment shows how to send three messages as part of a
message group:

// Setting put message options and message descriptor versions.
md.Version = MQMD_VERSION_2;

MQBEGIN (Hconn, BeginOptions, CompCode, Reason)
56 MQSeries Programming Patterns

pmo.Version = MQPMO_VERSION_2;
// Sets the put message options to generate a new message id for every
// message put into the queue and to put the messages in their logical
// order into the queue.
pmo.Options = MQPMO_LOGICAL_ORDER | MQPMO_NEW_MSG_ID;
md.MsgFlags = MQMF_MSG_IN_GROUP;

// Assign the GroupId in the message descriptor structure
memcpy(md.GroupId,MY_GROUP_ID,sizeof(md.GroupId));

// Puts a first message of the group
strcpy(buffer, “First messsage”);
messlen=strlen(buffer);

MQPUT(...);

// Puts a second message of the group
strcpy(buffer,"Middle Message");
messlen=strlen(buffer);

MQPUT(...);

// Puts the final message of the group. The final message must
// be identified by giving the MQMF_LAST_MSG_IN_GROUP flags in the message
// descriptor structure.
md.MsgFlags = MQMF_LAST_MSG_IN_GROUP;
strcpy(buffer,"Final Message");
messlen=strlen(buffer);

MQPUT(...);

If that group of messages be processed in order, you have to use the
MQGMO_LOGICAL_ORDER flag to retrieve the messages from the group in
their logical order.

// Setting get message options and message descriptor versions.
md.Version = MQMD_VERSION_2;
gmo.Version = MQMD_VERSION_2;

// Set the get message options required for this operation, especially
// the MQGMO_LOGICAL_ORDER
gmo.Options = MQGMO_LOGICAL_ORDER + MQGMO_WAIT //wait for new messages

+ MQGMO_CONVERT; /* convert if necessary */
gmo.WaitInterval = 1500; /* 15 second limit for waiting */
// We want to get all the messages on the queue so no match options will
// be needed.
gmo.MatchOptions = MQGMO_NONE;

while (CompCode != MQCC_FAILED) {
 Chapter 3. Programming with MQI 57

buflen = sizeof(buffer) - 1; /* buffer size available for GET */

md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;

MQGET(Hcon, /* connection handle */
Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE) {

if (Reason == MQRC_NO_MSG_AVAILABLE) {
// special report for normal end

printf("no more messages\n");
} else {

// general report for other reasons
printf("MQGET ended with reason code %ld\n", Reason);

/* treat truncated message as a failure for this sample */
if (Reason == MQRC_TRUNCATED_MSG_FAILED) {

CompCode = MQCC_FAILED;
}

}
}

// Shows the message data
if (CompCode != MQCC_FAILED) {

buffer[messlen] = '\0'; /* add terminator */
printf("message <%s>\n", buffer);

}
}

Additionally, the queue manager can control whether or not a message group
has been received completely. If we want only complete message groups to
appear in the queue, the MQGMO_ALL_MSGS_AVAILABLE option can be set in
the get message options structure.
58 MQSeries Programming Patterns

3.8 Exploring the patterns
In this section, we explore the patterns presented in Chapter 2, “Messaging and
the APIs” on page 11 using the C ANSI implementation of the MQI API in a
Microsoft Windows environment. All of these samples can be modified to work
with any other platform and language available.

The complete code for these examples can be found in the additional materials
that may be downloaded from the IBM Redbooks Web site.

3.8.1 The one-to-one, or point-to-point pattern
As explained in Chapter 1, “Introduction and patterns” on page 3, the one-to-one
or point-to-point programming pattern can be used for a send-and-forget
scenario as well as a request/reply scenario or any combination of those.

Here, we present a simple example of each one of them. The message data
used in these examples does not have any business logic, but the example can
be easily modified to be applied in a real-world situation.

Send-and-forget
This simple example of the send-and-forget pattern contains two programs. The
first one acts as the message sender, while the second one acts as the message
consumer. No response or acknowledgment is expected by the sender and
nothing is sent back by the consumer.

The sender program shown in Example 3-8 follows the logical flow below:

� Connect to a queue manager
� Open the PTP.QUEUE.LOCAL queue for output
� Prepare a message to be sent
� Send the message to the opened queue
� Close the queue
� Disconnect from the queue manager

Example 3-8 Sender program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* includes for MQI */
#include <cmqc.h>

#define QMGR_NAME" SAMPLE.QMGR1.ITSOE"
#define Q_NAME" PTP.QUEUE.LOCAL"

int main(int argc, char **argv) {
 Chapter 3. Programming with MQI 59

/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* MQCONN reason code */
MQLONG messlen; /* message length */
char buffer[100]; /* message buffer */
char QMName[50]; /* queue manager name */

printf("Send/Forget Sample");

// Connect to queue manager
strcpy(QMName, QMGR_NAME);
MQCONN(QMName,&Hcon,&CompCode,&CReason);

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED) {

printf("MQCONN ended with reason code %ld\n", CReason);
exit((int) CReason);

}

// Set queue name in the object descriptor
strcpy(od.ObjectName, Q_NAME);
printf("Target queue is %s\n", od.ObjectName);

// Open the target message queue for output
O_options = MQOO_OUTPUT /* open queue for output */

 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon,&od,O_options,&Hobj,&OpenCode,&Reason);

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}

if (OpenCode == MQCC_FAILED) {
printf("Unable to open queue for output\n");

} else {

memcpy(md.Format, /* character string format */
 MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);
60 MQSeries Programming Patterns

// Set message descriptor and put message options on version 2
md.Version = MQMD_VERSION_2;
pmo.Version = MQPMO_VERSION_2;

// Request a new messageId for this message
pmo.Options |= MQPMO_NEW_MSG_ID;

strcpy(buffer, "This is a simple Send/Forget sample");
messlen = strlen(buffer);

MQPUT(Hcon,Hobj,&md,&pmo,messlen,buffer,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQPUT ended with reason code %ld\n", Reason);
}

// Close the target queue (if it was opened)
if (OpenCode != MQCC_FAILED) {

C_options = 0; /* no close options */
MQCLOSE(Hcon,&Hobj,C_options,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQCLOSE ended with reason code %ld\n", Reason);
}

}
}

// Disconnect from MQM if not already disconnected
if (CReason != MQRC_ALREADY_CONNECTED) {
 MQDISC(&Hcon,&CompCode,&Reason);

 /* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQDISC ended with reason code %ld\n", Reason);
}

}

printf("Send/Forget Sample end\n");
return(0);

}

The consumer program shown in Example 3-9 follows the logical flow below:

� Connect to a queue manager
� Open the PTP.QUEUE.LOCAL queue for output
 Chapter 3. Programming with MQI 61

� Set the data buffer for the incoming message
� Get the message from the opened queue
� Print the message received
� Close the queue
� Disconnect from the queue manager

Example 3-9 Consumer program

int main(int argc, char **argv) {
/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 /** note, sample uses defaults where it can **/

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* reason code for MQCONN */
MQBYTE buffer[101]; /* message buffer */
MQLONG buflen; /* buffer length */
MQLONG messlen; /* message length received */
char QMName[50]; /* queue manager name */

printf("Consumer sample\n");

// Create object descriptor for subject queue
strcpy(od.ObjectName, Q_NAME);
strcpy(QMName, QMGR_NAME);

// Connect to queue manager
MQCONN(QMName,&Hcon,&CompCode,&CReason);

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED) {

printf("MQCONN ended with reason code %ld\n", CReason);
exit((int)CReason);

}

// Open the named message queue for input shared
O_options = MQOO_INPUT_SHARED /* open queue for input */

 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN(Hcon,&od,O_options,&Hobj,&OpenCode,&Reason);
62 MQSeries Programming Patterns

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}

if (OpenCode == MQCC_FAILED) {
printf("unable to open queue for input\n");

}

// These options cause the MsgId and CorrelId to be replaced, so
// that there is no need to reset them before each MQGET
gmo.Version = MQGMO_VERSION_2; /* Avoid need to reset Message */
gmo.MatchOptions = MQMO_NONE; /* ID and Correlation ID after */

 /* every MQGET */
gmo.Options = MQGMO_WAIT /* wait for new messages */

 + MQGMO_CONVERT; /* convert if necessary */
gmo.WaitInterval = 15000; /* 15 second limit for waiting */

buflen = sizeof(buffer) - 1; /* buffer size available for GET */

/**/
/* */
/* MQGET sets Encoding and CodedCharSetId to the values in */
/* the message returned, so these fields should be reset to */
/* the default values before every call, as MQGMO_CONVERT is */
/* specified. */
/* */
/**/

md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;

MQGET(Hcon,Hobj,&md,&gmo,buflen,buffer,&messlen,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

if (Reason == MQRC_NO_MSG_AVAILABLE) {
/* special report for normal end */
printf("no more messages\n");

} else { /* general report for other reasons */
printf("MQGET ended with reason code %ld\n", Reason);

/* treat truncated message as a failure for this sample */
if (Reason == MQRC_TRUNCATED_MSG_FAILED) {

CompCode = MQCC_FAILED;
}

}
}

 Chapter 3. Programming with MQI 63

/**/
/* Display each message received */
/**/
if (CompCode != MQCC_FAILED) {

buffer[messlen] = '\0'; /* add terminator */
printf("message <%s>\n", buffer);

}

/**/
/* */
/* Close the source queue (if it was opened) */
/* */
/**/
if (OpenCode != MQCC_FAILED) {

C_options = 0; /* no close options */
MQCLOSE(Hcon,&Hobj,C_options,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQCLOSE ended with reason code %ld\n", Reason);
}

}

// Disconnect from MQM if not already disconnected
if (CReason != MQRC_ALREADY_CONNECTED) {

MQDISC(&Hcon,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQDISC ended with reason code %ld\n", Reason);
}

}

printf("Consumer sample end\n");
return(0);

}

Request/reply
Just as in the send-and-forget pattern sample, this request/reply sample contains
two programs. The first one sends a request message to a queue (the
PTP.QUEUE.LOCAL queue) and waits for a response in another queue (the
PTP.REPLY.QUEUE.LOCAL queue). The second program acts as the replier and
it starts reading messages from a queue (the PTP.QUEUE.LOCAL queue).
Whenever a message is put onto that queue, it sends a generic response to the
PTP.REPLY.QUEUE.LOCAL queue.
64 MQSeries Programming Patterns

The request program shown in Example 3-10 follows the logical flow below:

� Connect to a queue manager
� Open the request (PTP.QUEUE.LOCAL) queue for output
� Open the reply (PTP.REPLY.QUEUE.LOCAL) queue for input
� Prepare the request message to be sent
� Send the request message to the opened queue
� Set the data buffer for the incoming message
� Assign the correlId used to identify the reply message
� Wait for the reply message in the reply queue
� Show the received reply message data.
� Close the queues
� Disconnect from the queue manager

Example 3-10 Request program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* includes for MQI */
#include <cmqc.h>

#define QMGR_NAME" SAMPLE.QMGR1.ITSOE"
#define REQUEST_Q_NAME" PTP.QUEUE.LOCAL"
#define REPLY_Q_NAME" PTP.REPLY.QUEUE.LOCAL"

int main(int argc, char **argv) {
/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQMD gmd = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj_request; /* request object handle */
MQHOBJ Hobj_reply; /* reply object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* MQCONN reason code */
MQLONG buflen; /* buffer length */
MQLONG messlen; /* message length */
char buffer[100]; /* message buffer */
char QMName[50]; /* queue manager name */

printf("Request/Reply Sample");
 Chapter 3. Programming with MQI 65

// Connect to queue manager
strcpy(QMName, QMGR_NAME);
MQCONN(QMName,&Hcon,&CompCode,&CReason);

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED) {

printf("MQCONN ended with reason code %ld\n", CReason);
exit((int) CReason);

}

// Set the request queue name in the object descriptor.
strcpy(od.ObjectName, REQUEST_Q_NAME);
printf("The request queue is %s\n", od.ObjectName);

// Open the request message queue for output
O_options = MQOO_OUTPUT /* open queue for output */

 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon,&od,O_options,&Hobj_request,&CompCode,&Reason);

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}

OpenCode = CompCode;

// Set the reply queue name in the object descriptor.
strcpy(od.ObjectName, REPLY_Q_NAME);
printf("The reply queue is %s\n", od.ObjectName);

// Open the reply message queue for input
O_options = MQOO_INPUT_SHARED /* open queue for output */

 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon,&od,O_options,&Hobj_reply,&CompCode,&Reason);

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}

// If any of them fail to open then the program exits
OpenCode |= CompCode;

if (OpenCode == MQCC_FAILED) {
printf("Unable to open queue for output\n");

} else {
66 MQSeries Programming Patterns

memcpy(md.Format, /* character string format */
 MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

// Set message descriptor and put message options on version 2
md.Version = MQMD_VERSION_2;
pmo.Version = MQPMO_VERSION_2;
gmo.Version = MQMD_VERSION_2;

// Request a new messageId and correlID for this message
pmo.Options |= MQPMO_NEW_MSG_ID;
pmo.Options |= MQPMO_NEW_CORREL_ID;

strcpy(buffer, "This is a simple Request/Reply sample");
messlen = strlen(buffer);

MQPUT(Hcon,Hobj_request,&md,&pmo,messlen,buffer,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQPUT ended with reason code %ld\n", Reason);
}

if (OpenCode != MQCC_FAILED) {

gmo.Options = MQGMO_WAIT /* wait for new messages */
 + MQGMO_CONVERT; /* convert if necessary */

gmo.WaitInterval = MQWI_UNLIMITED; /* 15 second limit for wait */
gmo.MatchOptions = MQMO_MATCH_CORREL_ID;

buflen = sizeof(buffer)-1;
memcpy(gmd.CorrelId, md.CorrelId, sizeof(md.CorrelId));

MQGET(Hcon,Hobj_reply,&gmd,&gmo,buflen,buffer,
&messlen,&CompCode,&Reason);

// Close the target queue (if it was opened)
C_options = 0; /* no close options */
MQCLOSE(Hcon,&Hobj_request,C_options,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQCLOSE ended with reason code %ld\n", Reason);
}

}
}

// Disconnect from MQM if not already disconnected
if (CReason != MQRC_ALREADY_CONNECTED) {
 Chapter 3. Programming with MQI 67

 MQDISC(&Hcon,&CompCode,&Reason);

 /* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQDISC ended with reason code %ld\n", Reason);
}

}

printf("Request/Reply Sample end\n");
return(0);

}

The reply program shown in Example 3-11 on page 68 follows the logical flow
below:

� Connect to a queue manager
� Open the request (PTP.QUEUE.LOCAL) queue for input
� Open the reply (PTP.REPLY.QUEUE.LOCAL) queue for output
� Set the data buffer for the incoming message
� Wait for the request message in the request queue
� Show the received request message data.
� Prepare the reply message to be sent
� Assign the correlId used to identify the reply message
� Send the reply message to the opened queue
� Close the queues
� Disconnect from the queue manager

Example 3-11 Reply program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* includes for MQI */
#include <cmqc.h>

#define QMGR_NAME" SAMPLE.QMGR1.ITSOE"
#define REQUEST_Q_NAME" PTP.QUEUE.LOCAL"
#define REPLY_Q_NAME" PTP.REPLY.QUEUE.LOCAL"

int main(int argc, char **argv) {
/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQMD gmd = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

MQHCONN Hcon; /* connection handle */
68 MQSeries Programming Patterns

MQHOBJ Hobj_request; /* request object handle */
MQHOBJ Hobj_reply; /* reply object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* MQCONN reason code */
MQLONG buflen; /* buffer length */
MQLONG messlen; /* message length */
char buffer[100]; /* message buffer */
char QMName[50]; /* queue manager name */

printf("Request/Reply Sample");

// Connect to queue manager
strcpy(QMName, QMGR_NAME);
MQCONN(QMName,&Hcon,&CompCode,&CReason);

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED) {

printf("MQCONN ended with reason code %ld\n", CReason);
exit((int) CReason);

}

// Set the request queue name in the object descriptor.
strcpy(od.ObjectName, REQUEST_Q_NAME);
printf("The request queue is %s\n", od.ObjectName);

// Open the request message queue for input
O_options = MQOO_INPUT_SHARED /* open queue for output */

 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon,&od,O_options,&Hobj_request,&CompCode,&Reason);

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}

OpenCode = CompCode;

// Set the reply queue name in the object descriptor.
strcpy(od.ObjectName, REPLY_Q_NAME);
printf("The request queue is %s\n", od.ObjectName);

// Open the reply message queue for output
O_options = MQOO_OUTPUT /* open queue for output */

 + MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon,&od,O_options,&Hobj_reply,&CompCode,&Reason);
 Chapter 3. Programming with MQI 69

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE) {

printf("MQOPEN ended with reason code %ld\n", Reason);
}

// If any of them fail to open then the program exits
OpenCode |= CompCode;

if (OpenCode == MQCC_FAILED) {
printf("Unable to open queue for output\n");

} else {

// Set message descriptor and put message options on version 2
md.Version = MQMD_VERSION_2;
gmd.Version = MQMD_VERSION_2;
pmo.Version = MQPMO_VERSION_2;
gmo.Version = MQMD_VERSION_2;

gmo.Options = MQGMO_WAIT /* wait for new messages */
 + MQGMO_CONVERT; /* convert if necessary */

gmo.WaitInterval = MQWI_UNLIMITED; /* 15 second limit for wait */
gmo.MatchOptions = MQMO_MATCH_CORREL_ID;

buflen = sizeof(buffer)-1;

MQGET(Hcon,Hobj_request,&gmd,&gmo,buflen,buffer,&messlen,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQPUT ended with reason code %ld\n", Reason);
}

if (OpenCode != MQCC_FAILED) {

// Terminating the message buffer
buffer[messlen+1] = 0;
printf("The request message is:%s",buffer);

// Request a new messageId and correlID for this message
memcpy(md.Format, /* character string format */

 MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

pmo.Options |= MQPMO_NEW_MSG_ID;

// Setting the correlId as the message selector
70 MQSeries Programming Patterns

memcpy(md.CorrelId, gmd.CorrelId, sizeof(md.CorrelId));
strcpy(buffer, "This is a simple reply message");
messlen = strlen(buffer);

MQPUT(Hcon,Hobj_reply,&md,&pmo,messlen,buffer,&CompCode,&Reason);

// Close the target queue (if it was opened)
C_options = 0; /* no close options */
MQCLOSE(Hcon,&Hobj_request,C_options,&CompCode,&Reason);

/* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQCLOSE ended with reason code %ld\n", Reason);
}

}
}

// Disconnect from MQM if not already disconnected
if (CReason != MQRC_ALREADY_CONNECTED) {
 MQDISC(&Hcon,&CompCode,&Reason);

 /* report reason, if any */
if (Reason != MQRC_NONE) {

printf("MQDISC ended with reason code %ld\n", Reason);
}

}

printf("Request/Reply Sample end\n");
return(0);

}

3.8.2 The publish/subscribe pattern
The publish/subscribe pattern has two major components, as explained in 1.1.5,
“Publish/subscribe” on page 7.

� The publisher: This component is the one that actually publishes the topics in
the broker stream.

� The subscriber: This component represent a client of the publisher or
publishers. It subscribes to one or many topics, and waits for any publication
on these topics to be sent to it by the broker.

We explore these two components with a simple example where a publisher
program publishes some data in a given topic and any number of subscribers
receive that data and show it in the standard output.
 Chapter 3. Programming with MQI 71

Publisher
The publisher program presented here is divided into three functions:

� The BuildMQRFHeader function

This function constructs an MQRFH data structure and appends the required
value/pair at the end of this structure.

� The PutPublication function

This function is responsible for sending the actual publication commands to
the broker using the stream queue.

� The main function

This function constructs the publication message and sends it to the stream
queue.

Example 3-12 shows the BuildMQRHeader function described above. This code
was taken from the C samples that come with the Publish/Subscribe SupportPac.

Example 3-12 The BuildMQRFHeader function

void BuildMQRFHeader(PMQBYTE pStart
 , PMQLONG pDataLength
 , MQCHAR TopicType[])
{
 PMQRFH pRFHeader = (PMQRFH)pStart;
 PMQCHAR pNameValueString;
/***/
 /* Clear the buffer before we start (initialize to nulls). */
 /***/
 memset((PMQBYTE)pStart, 0, *pDataLength);

 /***/
 /* Copy the MQRFH default values into the start of the buffer. */
 /***/
 memcpy(pRFHeader, &DefaultMQRFH, (size_t)MQRFH_STRUC_LENGTH_FIXED);

 /***/
 /* Set the format of the user data to be MQFMT_STRING. Even though */
 /* some of the publications use a structure to pass user data, the */
 /* data within this structure is entirely MQCHAR and can be */
 /* treated as MQFMT_STRING by the data conversion routines. */
 /***/
 memcpy(pRFHeader->Format, MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

 /***/
 /* As we have user data following the MQRFH we must set the CCSID */
 /* of the user data in the MQRFH for data conversion to be able to */
 /* be performed by the queue manager. As we do not currently know */
72 MQSeries Programming Patterns

 /* the CCSID that we are running in we can tell MQSeries that the */
 /* data that follows the MQRFH is in the same CCSID as the MQRFH. */
 /* The MQRFH will default to the CCSID of the queue manager */
 /* (MQCCSI_Q_MGR), so the user data will also inherit this CCSID. */
 /***/
 pRFHeader->CodedCharSetId = MQCCSI_INHERIT;

 /***/
 /* Start the NameValueString directly after the MQRFH structure. */
 /***/
 pNameValueString = (MQCHAR *)pRFHeader + MQRFH_STRUC_LENGTH_FIXED;

 /***/
 /* Add the command to the start of the NameValueString, this must */
 /* always be the first MQPS name token in the string. */
 /***/
 strcpy(pNameValueString, MQPS_COMMAND_B);
 strcat(pNameValueString, MQPS_PUBLISH);

 /***/
 /* Add the publication options and topic to the NameValueString. */
 /* We specify 'no registration' because neither sample application */
 /* is concerned with who is currently publishing, it also allows */
 /* us not to specify an identity queue (we are also publishing */
 /* datagrams so no replies will be sent either) which means that */
 /* we do not have to define a queue for this sample to use. */
 /***/
 strcat(pNameValueString, MQPS_PUBLICATION_OPTIONS_B);
 strcat(pNameValueString, MQPS_NO_REGISTRATION);

 strcat(pNameValueString, MQPS_TOPIC_B);
 strcat(pNameValueString, TOPIC_PREFIX);
 strcat(pNameValueString, TopicType);

 /***/
 /* Any user data that follows the NameValueString should start on */
 /* a word boundary. To ensure all platforms are satisfied we align */
 /* to a 16 byte boundary. */
 /* As the NameValueString has been null terminated (by using */
 /* strcat) any characters between the end of the string and the */
 /* next 16 byte boundary will be ignored by the broker, but if the */
 /* message is to be data converted we advise any extra characters */
 /* are set to nulls ('\0') or blanks (' '). In this sample we have */
 /* initialized the whole message block to nulls before we started */
 /* so all extra characters will be nulls by default. */
 /***/
 *pDataLength = MQRFH_STRUC_LENGTH_FIXED
 + ((strlen(pNameValueString)+15)/16)*16;
 pRFHeader->StrucLength = *pDataLength;
 Chapter 3. Programming with MQI 73

}

The PutPublication function shown in Example 3-13 follows the logical flow
below:

� Set the message format to MQFMT_RF_HEADER

� Set the message type to MQMT_DATAGRAM

� Set the message persistence

� Set the MQPMO_NEW_MSG_ID option to request a new messageId for the
message that is being sent

� Set the message buffer using the useFullBuffer method

� Send the message and returns true if successful

Example 3-13 The PutPublication function

void PutPublication(MQHCONN hConn
 , MQHOBJ hObj
 , PMQBYTE pMessage
 , MQLONG messageLength
 , PMQLONG pCompCode
 , PMQLONG pReason)
{
 MQPMO pmo = { MQPMO_DEFAULT };
 MQMD md = { MQMD_DEFAULT };

 /***/
 /* Set the md for a datagram MQRFH message. */
 /***/
 memcpy(md.Format, MQFMT_RF_HEADER, (size_t)MQ_FORMAT_LENGTH);
 md.MsgType = MQMT_DATAGRAM;
 md.Persistence = MQPER_PERSISTENT;
 pmo.Options |= MQPMO_NEW_MSG_ID;

 // MQPUT the message to the queue.
 MQPUT(hConn, hObj, &md, &pmo, messageLength, pMessage, pCompCode, pReason);
}

The main function shown in Example 3-14 follows the logical flow below:

� Connect to the queue manager
� Open the stream queue for output
� Allocate the message data buffer
� Build the MQRFH Header structure using the BuildMQRFHeader function
� Append the publication data to the end of the MQRFH Header structure
� Put the publication in the stream queue using the PutPublication function
74 MQSeries Programming Patterns

Example 3-14 The main function (Publisher example)

int main(int argc, char **argv) {
MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQHOBJ hObj = MQHO_UNUSABLE_HOBJ;
MQLONG CompCode;
MQLONG Reason;
MQOD od = { MQOD_DEFAULT };
MQLONG Options;
PMQBYTE pMessageBlock = NULL;
MQLONG messageLength;
char QMName[MQ_Q_MGR_NAME_LENGTH+1] = "";
char text[] = "HELLO WORLD";
MQLONG ConnReason;

 strcpy(QMName, QMGR_NAME);

/***/
/* Connect to the queue manager. */
/***/
MQCONN(QMName

, &hConn
, &CompCode
, &ConnReason);

if(CompCode == MQCC_FAILED) {
printf("MQCONN failed with CompCode %d and Reason %d\n",

CompCode, ConnReason);
}

if(CompCode == MQCC_OK) {
strncpy(od.ObjectName, STREAM, (size_t)MQ_Q_NAME_LENGTH);
Options = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING;
MQOPEN(hConn

 , &od
 , Options
 , &hObj
 , &CompCode
 , &Reason);

if(CompCode != MQCC_OK)
{
 printf("MQOPEN failed to open \"%s\"\nwith CompCode %d and RC %d\n",

 od.ObjectName, CompCode, Reason);
}

}

if(CompCode == MQCC_OK) {
messageLength = DEFAULT_MESSAGE_SIZE;
pMessageBlock = (PMQBYTE)malloc(messageLength);
 Chapter 3. Programming with MQI 75

BuildMQRFHeader(pMessageBlock
 , &messageLength
 , "TEST");

strcpy(pMessageBlock+messageLength,text);
 messageLength += strlen(text);

PutPublication(hConn
 , hObj
 , pMessageBlock
 , messageLength
 , &CompCode
 , &Reason);

}

}

Subscriber
The subscriber program presented here is basically divided into four functions:

� The BuildMQRFHeader function

This function constructs an MQRFH data structure and appends the required
value/pair at the end of this structure.

� The CheckForResponse function

This functions waits for a subscription acknowledgment from the broker, and
validates that the subscription has been successfully accepted.

� The PubSubCommand function

This function creates and sends a publish/subscribe command to the broker
and checks for the broker response using the CheckForResponse function.

� The main function

This function provides two possible behaviors, depending on the number of
parameters used when calling this program:

– If two parameters are specified, the first parameter is taken as the client
queue where the broker will send the publications for the client, and the
second parameter is used as the correlationId used to identify the
publication of that specific client.

The main function registers the client to the topic and starts an infinite loop
getting publications.

– If a third parameter is specified, the main function de-registers the client
from the topic and finishes.
76 MQSeries Programming Patterns

The CheckResponse function uses the PrintNameValueString function, which
basically prints the name/value pairs to the screen. This function is not shown
here but is available in the additional materials that may be downloaded from the
IBM Redbooks Web site.

Example 3-15 shows the BuildMQRHeader function described above. This code
was taken from the C samples that come with the Publish/Subscribe SupportPac.

Example 3-15 The BuildMQRFHeader (Subscriber example)

void BuildMQRFHeader(PMQBYTE pStart
 , PMQLONG pDataLength
 , PMQCHAR pCommand
 , MQLONG regOptions
 , MQLONG pubOptions
 , PMQCHAR pTopic) {

PMQRFH pRFHeader = (PMQRFH)pStart;
PMQCHAR pNameValueString;

/***/
/* Clear the buffer before we start (initialize to nulls). */
/***/
memset((PMQBYTE)pStart, '\0', *pDataLength);

/***/
/* Copy the MQRFH default values into the start of the buffer. */
/***/
memcpy(pRFHeader, &DefaultMQRFH, (size_t)MQRFH_STRUC_LENGTH_FIXED);

/***/
/* Start the NameValueString directly after the MQRFH structure. */
/***/
pNameValueString = (MQCHAR *)pRFHeader + MQRFH_STRUC_LENGTH_FIXED;

/***/
/* Add the command to the start of the NameValueString, this must */
/* always be the first MQPS name token in the string. */
/***/
strcpy(pNameValueString, MQPS_COMMAND_B);
strcat(pNameValueString, pCommand);

/***/
/* If registration options were supplied, add them to the string. */
/* For ease of implementation we insert the decimal representation */
/* of the options into the string as opposed to the character */
/* strings supplied for each option. */
/***/
if(regOptions != 0) {

strcat(pNameValueString, MQPS_REGISTRATION_OPTIONS_B);
 Chapter 3. Programming with MQI 77

sprintf(pNameValueString, "%s %d", pNameValueString, regOptions);
}

/***/
/* If publication options were supplied add them to the string. */
/* For ease of implementation we insert the decimal representation */
/* of the options into the string as opposed to the character */
/* strings supplied for each option. */
/***/
if(pubOptions != 0) {

strcat(pNameValueString, MQPS_PUBLICATION_OPTIONS_B);
sprintf(pNameValueString, "%s %d", pNameValueString, pubOptions);

}

/***/
/* Add the stream name to the NameValueString (optional for */
/* publications). */
/***/
strcat(pNameValueString, MQPS_STREAM_NAME_B);
strcat(pNameValueString, STREAM_QUEUE);

/***/
/* Add the topic to the NameValueString. */
/***/
strcat(pNameValueString, MQPS_TOPIC_B);
strcat(pNameValueString, pTopic);

/***/
/* Any user data that follows the NameValueString should start on */
/* a word boundary. To ensure all platforms are satisfied we align */
/* to a 16 byte boundary. */
/* As the NameValueString has been null terminated (by using */
/* strcat) any characters between the end of the string and the */
/* next 16 byte boundary will be ignored by the broker, but if the */
/* message is to be data converted we advise any extra characters */
/* are set to nulls ('\0') or blanks (' '). In this sample we have */
/* initialized the whole message block to nulls before we started */
/* so all extra characters will be nulls by default. */
/***/
*pDataLength = MQRFH_STRUC_LENGTH_FIXED

 + ((strlen(pNameValueString)+15)/16)*16;
pRFHeader->StrucLength = *pDataLength;

}

The CheckForResponse function shown in Example 3-16 follows the logical flow
below:
78 MQSeries Programming Patterns

� Prepare the message buffer
� Set the message options such as correlId and wait interval options
� Wait for a response from the broker
� If the response is not received, return a fail value
� If the response is received, validate the format of the response message
� Then extract the MQRFH Header structure from the message and validate

the completion code
� Show the response to the user if the subscription was not accepted

Example 3-16 The CheckForResponse function

void CheckForResponse(MQHCONN hConn
 , MQHOBJ hObj
 , PMQMD pMd
 , PMQBYTE pMessageBlock
 , MQLONG blockSize
 , PMQLONG pCompCode
 , PMQLONG pReason)
{

MQGMO gmo = { MQGMO_DEFAULT };
MQLONG messageLength;
PMQRFH pMQRFHeader;
PMQCHAR pNameValueString;
PMQCHAR pInputNameValueString;
ULONG stringLength;

/***/
/* Wait for a response message to arrive on our subscriber queue, */
/* the response's correlId will be the same as the messageId that */
/* the original message was sent with (returned in the md from the */
/* MQPUT) so match against this. */
/***/
gmo.Options = MQGMO_WAIT + MQGMO_CONVERT;
gmo.WaitInterval = MAX_RESPONSE_TIME;
gmo.Version = MQGMO_VERSION_2;
gmo.MatchOptions = MQMO_MATCH_CORREL_ID;
memcpy(pMd->CorrelId, pMd->MsgId, sizeof(MQBYTE24));
memset(pMd->MsgId, '\0', sizeof(MQBYTE24));

MQGET(hConn, hObj, pMd, &gmo, blockSize, pMessageBlock, &messageLength,
pCompCode, pReason);

if(*pCompCode != MQCC_OK) {
printf("MQGET failed with CompCode %d and Reason %d\n",

 *pCompCode, *pReason);
if(*pReason == MQRC_NO_MSG_AVAILABLE)

printf("No response sent by broker, check broker is running.\n");
} else {

/***/
 Chapter 3. Programming with MQI 79

/* Check that the message is in the MQRFH format. */
/***/
if(memcmp(pMd->Format, MQFMT_RF_HEADER, MQ_FORMAT_LENGTH) == 0) {

/***/
/* Locate the start of the NameValueString and its length. */
/***/
pMQRFHeader = (PMQRFH)pMessageBlock;
pNameValueString = (PMQCHAR)(pMessageBlock

 + MQRFH_STRUC_LENGTH_FIXED);
stringLength = pMQRFHeader->StrucLength

 - MQRFH_STRUC_LENGTH_FIXED;

/***/
/* The start of a response NameValueString is always in the */
/* same format: */
/* MQPSCompCode x MQPSReason y MQPSReasonText string ... */
/* We can scan the start of the string to check the CompCode */
/* and reason of the reply. */
/***/
sscanf(pNameValueString, "MQPSCompCode %d MQPSReason %d ",

 pCompCode, pReason);
if(*pCompCode != MQCC_OK) {

/***/
/* One possible error is acceptable, MQRCCF_NO_RETAINED_MSG, */
/* which is returned from a Request Update when there is no */
/* retained message on the broker. This is an allowable */
/* error so we can continue as before. */
/***/
if(*pReason == MQRCCF_NO_RETAINED_MSG) {

*pCompCode = MQCC_OK;
*pReason = MQRC_NONE;

} else {
/***/
/* Otherwise, display the error message supplied with the */
/* user data that was returned. This will be the original */
/* commands NameValueString. */
/***/
/***/
/* A response NameValueString is ALWAYS NULL terminated. */
/* Therefore, we can use printf to display it (as it is a */
/* string in the true sense of the word). We do not */
/* necessarily generate NULL terminated NameValueStrings */
/* so we use the PrintNameValueString function to display */
/* the NameValueString returned with the message, if any */
/* (most error responses do return the original */
/* NameValueString as user data). */
/***/
printf("Error response returned :\n");
printf(" %s\n",pNameValueString);
80 MQSeries Programming Patterns

if(messageLength != pMQRFHeader->StrucLength) {
printf("Original Command String:\n");
pInputNameValueString =

 (PMQCHAR)(pMessageBlock + pMQRFHeader->StrucLength);
PrintNameValueString(pInputNameValueString,

 (messageLength - pMQRFHeader->StrucLength));
}

}
}

} else {
/***/
/* If the message is not in the MQRFH format we have the wrong */
/* message. */
/***/

printf("Unexpected message format: %.8s\n", pMd->Format);
*pCompCode = MQCC_FAILED;

}
}

}

The PubSubCommand function shown in Example 3-17 follows the logical flow
listed below:

� Build the MQRFH Header structure using the BuildMQRFHeader function

� Set message format and type

� Specify the replyTo queue for this message

� Request a new messageId for this message

� Set the message buffer using the useFullBuffer method

� Assign the correlId for the request message (this correlId is going to be used
by the broker to send the message back to the subscriber)

� Put the command in the broker control queue

� Check for the broker response using the CheckForResponse function

Example 3-17 The PubSubCommand function

void PubSubCommand(MQHCONN hConn
 , MQHOBJ hBrokerObj
 , MQHOBJ hReplyObj
 , MQCHAR Command[]
 , PMQCHAR pTopic
 , MQLONG topicLength
 , const MQBYTE *pCorrelId
 , MQLONG regOptions
 , PMQLONG pCompCode
 Chapter 3. Programming with MQI 81

 , PMQLONG pReason)
{

MQPMO pmo = { MQPMO_DEFAULT };
MQMD md = { MQMD_DEFAULT };
MQLONG messageLength;
PMQBYTE pMessageBlock = NULL;

/***/
/* Allocate a block of storage to hold the Command message. */
/***/
messageLength = DEFAULT_MESSAGE_SIZE;
pMessageBlock = (PMQBYTE)malloc(messageLength);
if(pMessageBlock == NULL) {

printf("Unable to allocate storage\n");
*pCompCode = MQCC_FAILED;

} else {
/***/
/* Define an MQRFH structure at the start of the allocated */
/* storage, fill in the required fields and generate the */
/* NameValueString that follows it. */
/***/
BuildMQRFHeader(pMessageBlock

 , &messageLength
 , Command
 , regOptions
 , MQPUBO_NONE
 , pTopic);

/***/
/* Send the command as a request so that a reply is returned to */
/* us on completion at the broker. */
/***/
memcpy(md.Format, MQFMT_RF_HEADER, (size_t)MQ_FORMAT_LENGTH);
md.MsgType = MQMT_REQUEST;
/***/
/* Specify the subscriber's queue in the ReplyToQ of the MD. */
/* We have not put the subscriber's queue in the MQRFH */
/* NameValueString so the one in the ReplyToQ of the MD will be */
/* used as the identity of the subscriber. */
/***/
memcpy(md.ReplyToQ, ReplyToQueueName, MQ_Q_NAME_LENGTH);
pmo.Options |= MQPMO_NEW_MSG_ID;
/***/
/* All commands sent use the correlId as part of their identity. */
/***/
memcpy(md.CorrelId, pCorrelId , sizeof(MQBYTE24));

/***/
/* Put the command message to the broker control queue. */
82 MQSeries Programming Patterns

/***/
MQPUT(hConn

 , hBrokerObj
 , &md
 , &pmo
 , messageLength
 , pMessageBlock
 , pCompCode
 , pReason);

if(*pCompCode != MQCC_OK)
printf("MQPUT failed with CompCode %d and Reason %d\n",

 *pCompCode, *pReason);
else {

/***/
/* The put was successful; now wait for a response from the */
/* broker to inform us if the command was accepted by the */
/* broker. */
/* We use our command storage block to receive the response */
/* into to save on allocating extra storage. */
/***/
CheckForResponse(hConn

 , hReplyObj
 , &md
 , pMessageBlock
 , DEFAULT_MESSAGE_SIZE
 , pCompCode
 , pReason);

}
/***/
/* Free the storage. */
/***/
free(pMessageBlock);

}
}

Example 3-18 shows the subscriber main function. This function follows the
logical flow below:

� Connect to the queue manager

� Open the three required queues (Control, Stream and Client queues)

� If only two arguments are received:

– Send the registration command to the queue using the PubSubCommand
function

– Go into a infinite loop waiting for publications to arrive in the client queue
 Chapter 3. Programming with MQI 83

� If a third argument is received, then it sends the de-registration command to
the broker using the PubSubCommand function and finishes.

Example 3-18 The main function (Subscriber example)

int main(int argc, char **argv) {
MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQHOBJ hControlObj = MQHO_UNUSABLE_HOBJ;
MQHOBJ hStreamObj = MQHO_UNUSABLE_HOBJ;
MQHOBJ hSubscriberObj = MQHO_UNUSABLE_HOBJ;
MQLONG CompCode;
MQLONG Reason;
MQLONG ConnReason;
MQOD od = { MQOD_DEFAULT };
MQGMO gmo = { MQGMO_DEFAULT };
MQMD md = { MQMD_DEFAULT };
MQLONG Options;
PMQBYTE pMessageBlock = NULL;
MQLONG messageLength;
MQCHAR32 OpenQueue[3];
PMQHOBJ pHObj[3];
MQLONG queueCounter;
MQCHAR32 subscriptionTopic;
PMQRFH pMQRFHeader;
PMQCHAR pNameValueString;
PMQBYTE pUserData;
MQLONG nameValueStringLength;
MQBYTE24 EventCorrelId;
char QMName[MQ_Q_MGR_NAME_LENGTH+1] = "";

strcpy(OpenQueue[0], CONTROL_QUEUE);
pHObj[0] = &hControlObj;
strcpy(OpenQueue[1], STREAM_QUEUE);
pHObj[1] = &hStreamObj;
strcpy(OpenQueue[2], argv[1]);
pHObj[2] = &hSubscriberObj;

strcpy(EventCorrelId,argv[2]);
ReplyToQueueName = argv[1];

 strcpy(QMName, "SAMPLE.QMGR1.ITSOE");
 //strcpy(QMName, "ITSOG.QMGR1");

MQCONN(QMName, &hConn, &CompCode, &ConnReason);

if(CompCode == MQCC_FAILED) {
printf("MQCONN failed with CompCode %d and Reason %d\n",

CompCode, ConnReason);
printf("Usage: amqsres <QManager>\n");

}

84 MQSeries Programming Patterns

if(CompCode == MQCC_OK) {
for(queueCounter = 0
 ; (queueCounter < 3) && (CompCode == MQCC_OK)
 ; queueCounter++) {

strncpy(od.ObjectName, OpenQueue[queueCounter],
 (size_t)MQ_Q_NAME_LENGTH);

Options = MQOO_FAIL_IF_QUIESCING;

if(strcmp(OpenQueue[queueCounter], argv[1]) == 0)
Options += MQOO_INPUT_AS_Q_DEF;

else
Options += MQOO_OUTPUT;

MQOPEN(hConn, &od, Options, pHObj[queueCounter], &CompCode, &Reason);
if(CompCode != MQCC_OK) {
printf("MQOPEN failed to open \"%s\"\nwith CompCode %d and RC %d\n",

od.ObjectName, CompCode, Reason);
printf("Usage: amqsres <QManager>\n");

}
}

}

if (argc > 3) {
strcpy(subscriptionTopic, TOPIC_PREFIX);
strcat(subscriptionTopic, "*");
PubSubCommand(hConn

 , hControlObj
 , hSubscriberObj
 , MQPS_DEREGISTER_SUBSCRIBER
 , subscriptionTopic
 , strlen(subscriptionTopic)
 , EventCorrelId
 , MQREGO_CORREL_ID_AS_IDENTITY
 , &CompCode
 , &Reason);

} else {
strcpy(subscriptionTopic, TOPIC_PREFIX);
strcat(subscriptionTopic, "*");
PubSubCommand(hConn

 , hControlObj
 , hSubscriberObj
 , MQPS_REGISTER_SUBSCRIBER
 , subscriptionTopic
 , strlen(subscriptionTopic)
 , EventCorrelId
 , MQREGO_CORREL_ID_AS_IDENTITY
 Chapter 3. Programming with MQI 85

 , &CompCode
 , &Reason);

if(CompCode == MQCC_OK) {
/***/
/* Allocate a block of memory for the publications to be */
/* loaded into by MQGET. We know the maximum size of a */
/* publication published by amqsgam so we can allocate a */
/* block large enough for any message we will receive. */
/***/
messageLength = DEFAULT_MESSAGE_SIZE;
pMessageBlock = (PMQBYTE)malloc(DEFAULT_MESSAGE_SIZE);

gmo.Options = MQGMO_WAIT + MQGMO_CONVERT;
gmo.WaitInterval = MAX_WAIT_TIME;
gmo.Version = MQGMO_VERSION_2;
gmo.MatchOptions = MQMO_MATCH_CORREL_ID;
memcpy(md.CorrelId, EventCorrelId,

(size_t)MQ_CORREL_ID_LENGTH);

while(CompCode == MQCC_OK) {
MQGET(hConn

, hSubscriberObj
, &md
, &gmo
, DEFAULT_MESSAGE_SIZE
, pMessageBlock
, &messageLength
, &CompCode
, &Reason);

if(memcmp(md.Format, MQFMT_RF_HEADER, MQ_FORMAT_LENGTH) == 0) {
/***/
/* Split the message data into the three important */
/* areas: the MQRFH header, the NameValueString that */
/* follows it and any user data following that. */
/***/
pMQRFHeader = (PMQRFH)pMessageBlock;
pNameValueString = (PMQCHAR)(pMessageBlock

 + MQRFH_STRUC_LENGTH_FIXED);
nameValueStringLength = pMQRFHeader->StrucLength

 - MQRFH_STRUC_LENGTH_FIXED;
pUserData = pMessageBlock + pMQRFHeader->StrucLength;
*(pMessageBlock + messageLength) = 0;
printf("The publication received is: %s\n",pUserData);

}
}

}
}

}

86 MQSeries Programming Patterns

In this chapter we have seen how the basic MQI can be used by application
programmers to build applications. In the next chapter we discuss the use of the
AMI.
 Chapter 3. Programming with MQI 87

88 MQSeries Programming Patterns

Chapter 4. Programming with AMI

This chapter is an overview of the Application Message Interface, what it is and
how it can be used. Please refer to the Application Message Interface Reference,
SC34-5604 for more detailed information.

4

© Copyright IBM Corp. 2002. All rights reserved. 89

4.1 Overview
The Application Message Interface (AMI) is a new addition to the existing
MQSeries APIs. It provides programmers with a very simple interface that can be
used to work with queue manager objects. With AMI, the programmer doesn’t
need to have in-depth knowledge of all the MQI calls, but can instead
concentrate on the business logic of the application. This means fewer
programming errors and more flexibility to address business and technology
changes. The AMI reduces the amount of code required to write a new
application.

There are separate calls for each programming pattern. For example, if the
programmer wants to code a publish/subscribe application, he will have to use
different calls from those used by someone who is coding a request/reply
application. There are fewer structures but more verbs within a single function.
Many functions are now part of the middleware layer where a set of policies
defined by the enterprise are applied on the application's behalf. AMI has
bindings for standard programming languages including Java, C, and C++.

AMI allows centralized control and flexible change management, high-level
interface for point-to-point models, and publish/subscribe. A key feature of AMI is
that it is independent from the transport and messaging infrastructure.

AMI can be used to send and receive messages in the following ways:

� Send-and-forget, where no reply is needed.

� Distribution list, where a message is sent to multiple destinations.

� Request/response, where a sending application needs a response to the
request message.

� Publish/subscribe, where a broker manages the distribution of messages.

An example of a simple send-and-forget application is shown in Figure 4-1 on
page 91.
90 MQSeries Programming Patterns

Figure 4-1 Example of an AMI send-and-forget application

Using AMI, the programmer generally deals with just three concepts:

� Message, or “what” is being exchanged. A message consists of:

– Header information that identifies the message and its properties.

– The body of the message, which contains the application data. This
application data can be generated by the application or a message service
API.

In an MQSeries application where MQI is being used, the message attributes
are set up explicitly using the MQI, so the application programmer must
understand their purpose. With AMI they are contained in the message
object, or defined in a policy that is set up by the system administrator, so the
programmer is not concerned with these details.

� Policy, or “how” the message is going to be handled. It contains information
such as priority or confirmation of delivery. Any number of applications can
use the same policy and any application can use more than one policy. IBM
provides a suite of common or default policies and also provides an open
policy handler framework that allows additional policies to be created by
 Chapter 4. Programming with AMI 91

third-party software vendors. If a policy has to be changed there is, in general,
no need to change the applications that use it.

� Services, or “where” the message is going to be sent to or received from. In
MQSeries terms, these represent queues, distribution lists, etc. A service may
represent a single destination serviced by a single application, but it can also
represent a list of destinations or a message broker. The service is normally
defined in the repository, which specifies the mapping to real resources in the
messaging network. Different types of services can be defined in the
repository. Services are implicitly opened and closed by the AMI.

A repository provides definitions for services and policies. If the name of a
service or policy is not found in the repository, or an AMI application does not
have a repository, the definitions built into the AMI are used. Repository
definitions are stored in a repository file in XML format. These definitions can be
changed via an administration tool, which is only available on the Windows
platform.

We can share the repository file between different platforms either by using
standard file sharing facilities or by simply transferring the file. It is important to
clarify that AMI applications can be run with or without a repository. If there is no
repository, then the default values will be used.

In the administration tool, sender and receiver definitions are represented in the
repository by a single definition called a service point. The following objects can
be defined from the administration tool:

� Service points
� Distribution lists
� Publishers
� Subscribers
� Policies

Policies and services other than distribution lists can be created with or without a
corresponding repository definition. Distribution lists can be created only after a
service point has been created. To create a service or policy using the repository,
it must contain a definition of the appropriate type with a name that matches the
name specified by the application.

For example, to create a sender object named “ORDERS”, the repository must
have a service point definition named “ORDERS”. Policies and services created
with a repository have their contents initialized from the named repository
definition. Policies and services created without a repository have their contents
initialized from values defined in the default system definitions. The
administration tool is only part of the MQSeries AMI SupportPac (MA0F) for
92 MQSeries Programming Patterns

Windows NT and can only be installed on a machine running Windows NT 4.0 or
Windows 2000. To start the administration tool, select IBM MQSeries AMI ->
IBM MQSeries AMI Administration Tool or from Windows Explorer double-click
the file \amt\AMITool\amitool.bat. Figure 4-2 shows the AMI administration tool.

Figure 4-2 AMI administration tool

There are two separate roles within AMI: the administration role and the
development role.

In the development role, the developer focuses on what information is going to
be sent by using the resources provided by the administrator. This role doesn’t
require in-depth knowledge of MQSeries.

The administrator role is responsible for creating and defining services and
policies in the repository. In other words, the administrator defines “where” and
“how” the information is going to be sent. This role does require in-depth
knowledge of MQSeries.
 Chapter 4. Programming with AMI 93

With AMI, connectivity code is reduced to specifying a service and a policy to be
used when sending or receiving messages. Policies and services are defined in
a repository using the administration tool, so they can be modified by the
administrator without having any impact in the application. Using AMI, it is
possible to exchange messages with one or more of the following:

� Another application that is using AMI.

� An application that is using any of the different MQSeries APIs (MQI,
MQSeries Classes for Java, ActiveX, etc.).

� A message broker (MQSeries Publish/Subscribe or WebSphere MQ
Integrator).

AMI simplifies the creation of publish/subscribe applications. Much of the
configuration of the publish/subscribe environment is held in the repository that is
referenced by the applications. AMI is recommended when the programmer is
looking for a simple API that doesn’t require any in-depth knowledge of
MQSeries. AMI is available via a SupportPac (MA0F) and it can be downloaded
from IBM’s Web site at:

http://www.ibm.com/software/ts/mqseries/txppacs/

4.2 Platforms and languages
As mentioned in 4.1, “Overview” on page 90, AMI is available for C, C++ and
Java. It can be used on the following platforms:

� Windows NT and Windows 2000
� AIX V4.3, or later
� Sun Solaris 2.6 or 2.7
� HP-UX V11.0
� AS/400 V4R4, or later

AMI is also available for COBOL but this is only limited to OS/390 V2R6 or later,
CICS 4.1 and IMS V5.1.

AMI has two levels of procedural application programming:

� High-level: procedural C and COBOL (on OS/390 interface). The number of
AMI functions is reduced because operations are implicit.

� Object level: Java and C++ class interface/object style C interface.

Note: MQSeries Publish/Subscribe SupportPac (MA0C) must be installed
before attempting to use AMI’s publish/subscribe functions.
94 MQSeries Programming Patterns

http://www.ibm.com/software/ts/mqseries/txppacs/

Note: The C high-level interface contains functions that cover the requirements
of most applications. However, if extra functionality is needed, we can use the C
object interface in combination with the high-level interface.

In addition to providing a simple interface to work with queue manager objects,
AMI has a natural style for each programming language. Example 4-1 shows a
send-and-forget application using the C API.

Example 4-1 Simple send-and-forget application written in C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <amtc.h>
#include <time.h>

int main(void)
{

/* Create a Session */
hSession = amSesCreate(SAMPLE_SESSION_NAME, &compCode, &reason);
hPol = amSesCreatePolicy(hSession, SAMPLE_POLICY_NAME, &compCode, &reason);
hSender = amSesCreateSender(hSession, SAMPLE_SENDER_NAME, &compCode, &reason);
success = amSesOpen(hSession, hPol, &compCode, &reason);
success = amSndOpen(hSender, hPol, &compCode, &reason);
success = amSndSend(hSender, hPol, AMH_NULL_HANDLE, AMH_NULL_HANDLE,
strlen(sampleMsg), (unsigned char *)sampleMsg, AMH_NULL_HANDLE, &compCode,
&reason);

success = amSesDelete(&hSession, &compCode, &reason);

endSample(EXIT_SUCCESS);
}

Example 4-2 shows the same send-and-forget application shown in
Example 4-1, but using the Java API. Notice the natural style for each of the two
programming languages.

Example 4-2 Simple send-and-forget written in Java

import java.util.*;
import com.ibm.mq.amt.*;
.
.
.
public void main()
{

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(SAMPLE_SESSION_NAME);
myPolicy = mySession.createPolicy(SAMPLE_POLICY_NAME);
 Chapter 4. Programming with AMI 95

mySender = mySession.createSender(SAMPLE_SENDER_NAME);
mySendMSG = mySession.createMessage(SAMPLE_MESSAGE_NAME);
mySession.open(myPolicy);
mySender.open(myPolicy);
String sampleMessage = new String("Sample message");
mySendMSG.writeBytes(sampleMessage.getBytes());
mySender.send(mySendMSG);
mySender.close(myPolicy);
mySession.close(myPolicy);

}

4.3 Libraries and packages
Now that we know the different programming languages that can be used to write
AMI applications, we must know the different libraries that are used to write AMI
applications. If C is used to write the application, AMI provides a header file
called amtc.h. This file contains all the functions, structures and constants used
by AMI. This header file must be included in the application, which can be
achieved by using the following statement:

#include <amtc.h>

Figure 4-1 shows the location of the amtc.h file on the different platforms where
AMI is supported.

Table 4-1 Location of the AMI C header file

Note: During compilation time, the file amtc.h must be accessible to the program.

For C++, AMI also provides another header file called amtcpp.hpp. This header
file contains the functions, structures and constants for C++, just as the header
file for C, amtcpp.hpp, must be included in the application. This can also be
achieved by using the following statement:

#include<amtcpp.hpp>

Operating System Platform Location

AS/400 QMQAMI/H

UNIX (including AIX, HP-UX, and Solaris) {MQSeries Directory}/amt/inc

Windows {MQSeries Directory}\amt\include

OS/390 hlq.SCSQC370
96 MQSeries Programming Patterns

Table 4-2 shows the location of amtcpp.hpp file on the different platforms where
AMI is supported.

Table 4-2 Location of the AMI C++ header file

Note: During compilation time, the files amtc.h and amtcpp.hpp must be
accessible to the program, even if amtcpp.hpp is the only header file in use.

If the developer wants to use the Java API, AMI provides a JAR file that contains
all the classes comprising the AMI package for Java.

� Java package: com.ibm.mq.amt
� Java JAR file: com.ibm.mq.amt.jar

In order to use the AMI package for Java, it must be imported to the Java
application by using the import statement:

import com.ibm.mq.amt.*;

Note: The JAR file must be part of the CLASSPATH environment variable (this
must be done in both the environment in which the Java application is compiled
and in the environment in which it is run).

Table 4-3 shows the location of the AMI JAR file on the different platforms where
AMI is supported.

Table 4-3 Location of the AMI Java JAR file

If COBOL is going to be used, AMI provides the following copybooks to assist the
programmer with the coding of applications:

� AMTV: This copybook contains constants and return codes.

� AMTELEML: This copybook contains the definition of the AMELEM data
structure that is used to pass name and value element information across
AMI. This copybook provides the definitions without any initial values.

Operating System Platform Location

AS/400 QMQAMI/H

UNIX (including AIX, HP-UX, and Solaris) {MQSeries Base Directory}/amt/inc

Windows {MQSeries Base Directory}\amt\include

Operating System Platform Location

AS/400 /QIBM/ProdData/mqm/amt/Java/lib

UNIX (including AIX, HP-UX, and Solaris) {MQSeries Base Directory}/java/lib

Windows {MQSeries Base Directory}\java\lib
 Chapter 4. Programming with AMI 97

� AMTELEMV: This copybook has the same contents as the AMTELEML
copybook but the only difference is that it provides the definitions with initial
values.

These copybooks are installed in the MQSeries for OS/390 library
hlq.SCSQCOBC. It is recommended that you use the copybook AMTELEMV to
define an AMELEM structure. This provides default initial values, which ensures
that the strucId and version fields have valid values. If the values passed for
these fields are not valid, AMI will reject them.

Table 4-4 shows the language compilers for C, COBOL, C++, and Java that are
supported by AMI:

Table 4-4 Language compilers.

For further information on how to prepare and run the AMI applications in any of
the supported languages, refer to the MQSeries Application Messaging Interface
documentation.

4.4 Architectural model
AMI provides the following objects:

Operating
system platform

Supported compilers

AIX VisualAge for C++ Version 5.0
JDK 1.1.7 and later

OS/400 AS/400 Developer Kit for Java (5769JV1)
ILE C for AS/400 (5769CX2)
ILE C++ for AS/400 (5799GDW)
Visual Age for C++ for 0S/400 (5716CX4)

HP-UX HP aC++ B3910B A.03.10
HP aC++ B3910B A.03.04 (970930) Support library
JDK 1.1.7, and later

OS/390 OS/390 C/C++ Version 2 Release 6 or later
IBM COBOL for OS/390 & VM Version 2 Release 1 or later
IBM COBOL for MVS and VM Version 1 Release 2 or later

Sun Solaris Workshop Compiler 4.2 (with Solaris 2.6)
Workshop Compiler 5.0 (with Solaris 7)
JDK 1.1.7, or later

Windows Microsoft Visual C++ Version 6
JDK 1.1.7, or later
98 MQSeries Programming Patterns

� Session: Used to create a new AMI session and also to control transactional
support. This is the first object that needs to be initialized before creating and
managing all other objects (messages, policies, receivers, etc.).

� Message: This object contains the message data and the message descriptor
structure used when sending or receiving messages.

� Sender: This is a service that represents a destination to which messages are
sent. The MQOD structure is encapsulated within this object.

� Receiver: This is a service that represents a source from which messages are
received. The MQOD structure is also encapsulated within this class.

� Distribution List: Contains a list of sender services to provide a list of
destinations.

� Publisher: Contains a sender service where the destination is a
publish/subscribe broker.

� Subscriber: Contains a sender service to send subscribe and unsubscribe
messages to a publish/subscribe broker, and a receiver service to receive
publications from the broker.

� Policy: Defines how the message should be handled, including items such as
priority, persistence and whether it is included in a unit of work.

Sender, receiver, distribution list, publisher and subscriber are all services. The
only objects that are connected directly to the message transport layer are the
senders and receivers. Therefore, distribution list and publisher objects contain
senders while subscriber objects contain a sender and a receiver. Figure 4-3
shows the AMI architectural model and how each object interacts with each
other.
 Chapter 4. Programming with AMI 99

Figure 4-3 AMI architectural model

Message, service and policy objects are created and managed by a session
object. This session object also provides the scope for a unit of work. The
combination of a connection, sender and receiver objects provides the transport
for the message.

The programmer can either use the attributes for message, service and policy
objects provided with the system defaults, or he can use the attributes defined by
the administrator that are stored in the repository. In addition to the objects
mentioned above, AMI provides additional object definitions for C++ and Java.

These objects are:

� Session factory: This object is used to create session objects. Without a
session factory, a session object can’t be created.

� Helper and Exception objects.
100 MQSeries Programming Patterns

4.5 Programming with AMI
In the following sections we will see how AMI applies the common steps used
when working with queue manager objects that were discussed in Chapter 1,
“Introduction and patterns” on page 3. The examples provided in this section
were written using the Java interface. For information on how to issue the calls in
any other programming language where AMI is supported, please refer to the
Application Messaging Interface documentation.

4.5.1 Connecting to the queue manager
Just as in the other MQSeries APIs, we must connect to a queue manager before
attempting to access any queue manager object. This can be achieved by using
two AMI Java calls. First we need to create a new session factory object.
Remember that in order to create a session object, there must be at least one
session factory object (this only applies to C++ and Java). The command used to
create a session factory is:

factoryName is an optional parameter. This string is actually the directory where
the repository and host files are located, and it can be the fully qualified directory
that includes the path under which the files are located, for example C:\Program
Files\MQSeries\amt. If this parameter is not specified, the value specified in the
AMT_DATA_PATH environment variable is going to be used. This environment
variable is normally set during the installation of the MQSeries AMI SupportPac
(MA0F).

After creating the session factory object, we can define a new session object.
This is done by using the createSession() method of the AmSessionFactory
class.

The sessionName parameter is a name that we can use to identify the session
object. Once the session factory is initialized and the session object is created,
the application is ready to work with MQSeries objects. In Chapter 3,
“Programming with MQI” on page 23, we saw that in order to connect to a queue
manager using the MQI API, the queue manager must be specified in the
MQCONN call. In AMI, the queue manager name is read from the host file

SessionFactoryObject = new AmSessionFactory(String factoryName)

mySessionFactory.createSession(String sessionName)
 Chapter 4. Programming with AMI 101

(amthost.xml by default) located in {MQSeries Base Directory}/amt. Example 4-3
shows a sample host file used to connect to a queue manager called ITSOH. If
no queue manager is specified in the defaultConnection tag, then the default
queue manager will be used.

Example 4-3 Sample host file

<?xml version=”1.0” encoding=”UTF-8” ?>
<queueManagersNames defaultConnection=”ITSOH”
connectionName1=”queueManagerName1” connectionName2=”queueManagerName2” />

Example 4-4 shows how to create a AmSessionFactory object and an
AmSession object called ITSO.

Example 4-4 Creating the new objects

private AmSessionFactory mySessionFactory = null;
private AmSession mySession = null;

// --
// Since we are not specifying a name for the AmSessionFactory,
// we expect the AMI files to be stored in the default
// location.
// --
mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO”);

Once the session is created, the order in which we create the other AMI objects
does not matter. However, it is recommended that we initialize the objects in the
following order:

1. Session
2. Policy
3. Sender/Receiver/Publisher/Subscriber/Distribution List
4. Message

4.5.2 Opening MQSeries objects
After creating session factory and session objects, the next step is to
create/initialize the other AMI objects.

Creating a policy
First we need to create a policy object. This can be done by using the
createPolicy() method of the AmSession class.

sessionObject.createPolicy(String policyName)
102 MQSeries Programming Patterns

If the policyName that we specified matches a policy name that already exists in
the repository, then the policy will be created using that repository definition. If it
doesn’t exist, then the policy is going to be created using the default values. In
Example 4-5 we can see how to create AMT.SAMPLE.POLICY. Since
AMT.SAMPLE.POLICY is already defined in the repository, then the policy is
going to be created using the values already defined in the repository.

Example 4-5 Creating the policy object

public static void main()
{
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
}

After we have created the policy, the next step is to create the type of object
depending on the design pattern that the application is going to use. This type of
object can be:

� Senders and/or receivers (also known as service points)
� Publishers
� Subscribers
� Distribution lists

Creating a sender
In order to create a sender object, we use the createSender() method of the
session object.

If the senderName that is specified matches a name that already exists in the
repository, then the sender object will be created using the definition found in the
repository. If it doesn’t exist, then the sender will be created using the default
values. Example 4-6 shows how to create a sender called AMT.SENDER.NAME.

Example 4-6 Creating a sender

AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;

sessionObject.createSender(String senderName);
 Chapter 4. Programming with AMI 103

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
mySender = mySession.createSender(“AMT.SENDER.NAME”);

Creating a receiver
To create a receiver object, we use the createReceiver() method of the session
object.

If the receiverName that is specified matches a name that already exists in the
repository, then the receiver object will be created using the definition found in
the repository. If it doesn’t exist, then the receiver will be created using the
default values. Example 4-7 shows how to create a receiver called
AMT.RECEIVER.NAME.

Example 4-7 Creating a receiver

AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;
AmReceiver myReceiver = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
myReceiver = mySession.createReceiver(“AMT.RECEIVER.NAME”);

Creating a publisher

To create a publisher object, we use the createPublisher() method of the session
object.

If the publisherName that is specified matches a name that already exists in the
repository, then the publisher object will be created using the definition found in
the repository. If it doesn’t exist, then the sender will be created using the default
values. The service type for the sender and receiver points used by the publisher
and subscriber must be defined in the repository as MQRFH. This causes an

sessionObject.createReceiver(String receiverName);

sessionObject.createPublisher(String publisherName);
104 MQSeries Programming Patterns

MQRFH header containing publish/subscribe name/value elements to be added
to a message when it is sent. For more information, please refer to the
Application Messaging Interface documentation. Example 4-8 shows how to
create a publisher called AMT.PUBLISHER.NAME.

Example 4-8 Creating a publisher

AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;
AmPublisher myPublisher = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
myPublisher = mySession.createPublisher(“AMT.PUBLISHER.NAME”);

Creating a subscriber

To create a subscriber object, we use the createSubscriber() method of the
session object.

If the subscriberName that we specified matches a name that already exists in
the repository, then the subscriber will be created using the definition found in the
repository. If it doesn’t exist, then it will be created using the default values.
Example 4-9 shows how to create a subscriber called
AMT.SAMPLE.SUBSCRIBER.

Example 4-9 Creating a subscriber

public static void main()
{
.
.
.
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
mySubscriber = mySession.createSubscriber(“AMT.SAMPLE.SUBSCRIBER”);
}

sessionObject.createSubscriber(String subscriberName);
 Chapter 4. Programming with AMI 105

Creating a distribution list

To create a distribution list object, we use the createDistributionList() method of
the session object.

If the distribution list name that we specified matches a name that already exists
in the repository, then the object will be created using the definition found in the
repository. If it doesn’t exist, then the distribution list will be created using the
default values. Before we can use a distribution list, the administrator must first
define sender services and then define these services as part of the distribution
list. Example 4-10 shows how to create a distribution list.

Example 4-10 Creating a distribution list

public static void main()
{
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
mySender = mySession.createDistributionList(“AMT.DISTRIBUTION.LIST”);
}

Figure 4-4 shows how a distribution list called AMT.DISTRIBUTION.LIST was
defined in the repository. Notice that the objects that are part of the distribution
list are also defined in the service points section.

sessionObject.createDistributionList(String distributionlistName);
106 MQSeries Programming Patterns

Figure 4-4 Definition of a distribution list called AMT.DISTRIBUTION.LIST

Creating a message
To create a message object, we use the createMessage() method of the
AmSession class as follows.

Where messageName is a name that has some meaning to the application.
Example 4-11 shows a sample code of how to create a message called
ITSO.SAMPLE.MESSAGE.NAME.

Example 4-11 Creating a message object

public static void main()
{
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;

 AmSession.createMessage(String messageName)
 Chapter 4. Programming with AMI 107

AmPolicy myPolicy = null;
AmPolicy myPolicy = null;
AmMessage mySendMSG = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
mySender = mySession.createSender(“AMT.SENDER_NAME”);
mySendMSG = mySession.createMessage(“ITSO.SAMPLE.MESSAGE.NAME”);
}

Now that we created the objects, the next step is to open the objects that were
defined. This is achieved by using the open() method. For instance, if a sender
object needs to be opened, then the open() method of the sender object will be
used. All the open calls share one common parameter, which is the reference to
the policy object. This reference was created using the createPolicy() method of
the AmSession class as we saw in “Creating a policy” on page 102. If the policy
is not specified, then the system default policy is used. The syntax for the open
method is:

Example 4-12 shows how to open session, publisher, and receiver objects.

Example 4-12 Opening different types of objects

Open the session factory
Create the required objects (session, publisher, message, etc.)
/....

myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);

mySession.open(myPolicy);
myPublisher.open(myPolicy);
myRespReceiver.open(myPolicy);

AmSession.open(AmPolicy policyObject);

AmSender.open(AmPolicy policyObject);

AmReceiver.open (AmPolicy policyObject);

AmPublisher.open(AmPolicy policyObject);

AmSubscriber.open(AmPolicy policyObject);
108 MQSeries Programming Patterns

4.5.3 Basic operations
In 4.5.2, “Opening MQSeries objects” on page 102, we saw how to create and
open the different objects that are available. Now that the objects are created and
initialized, we can proceed with the basic operations that can be performed
against the MQSeries objects. These basic operations include getting messages,
sending messages, publishing, and subscribing messages.

Before we can send or receive a message in MQI, we have to open a queue for
either input or output. In MQI terms this is known as the open options
(MQOO_INPUT_SHARED, MQOO_OUTPUT). In AMI these definitions are
defined by the administrator and stored in the repository, so the programmer
doesn’t have to explicitly define them when the queue manager objects are
opened or as part of the call.

Sending messages
To send a message, we use the send() method of the sender class. Remember
that before attempting to send a message, at least four objects must be created
(session, policy, message, and sender). If a response is expected, then a
receiver object and an additional message object will have to be created.

The message content is always sent in byte form (Java’s native form), so it is
recommended that you use the getBytes() method (Java native method) to
convert the message into an array of bytes before sending it. Once the message
is converted, it then needs to be written to the message object by using the
writeBytes() method of the sender class.

Additionally, we can specify a policy object and/or a receiver or another message
object. Remember that the policy is “how” the message is going to be handled. In
other words, with a policy we can specify the priority, or what action should be
taken if there is an error while attempting to deliver the message, etc.

If we require some type of response, such as a confirmation of delivery report or
an acknowledgment from the remote application, we have to specify a receiver
object or a message object, depending on what we want to do with the response.
Example 4-13 shows how to send a sample message.

Example 4-13 Sending a sample message

public static void main()
{
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;

senderObject.send(AmMessage messageObject, AmReceiver receiverObject/
AmMessage receivedMessage, AmPolicy policyObject)
 Chapter 4. Programming with AMI 109

AmPolicy myPolicy = null;
AmSender mySender = null;
AmMessage mySendMSG = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
mySender = mySession.createSender(“AMT.SENDER_NAME”);
mySendMSG = mySession.createMessage(“ITSO.SAMPLE.MESSAGE.NAME”);
String sampleMessage = new String("Sample message");
mySendMSG.writeBytes(sampleMessage.getBytes());
mySender.send(mySendMSG);
}

We can also send messages to multiple destinations simultaneously. This can be
achieved by using the send() method of the distributionList object. Refer to 4.5.2,
“Opening MQSeries objects” on page 102 for further information on how to
create and open a distribution list. Example 4-14 shows an example of how to
send a sample message to multiple destinations.

Example 4-14 Send a message to multiple destinations

public static void main()
{
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;
AmDistributionList myDistributionLst = null;
AmMessage mySendMSG = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
myDistributionLst = mySession.createDistributionList(“ITSO.DISTRIBUTION.LIST”);
mySendMSG = mySession.createMessage(“ITSO.SAMPLE.MESSAGE.NAME”);
String sampleMessage = new String("Sample message");
mySendMSG.writeBytes(sampleMessage.getBytes());
myDistributionList.send(mySendMSG);
}

Getting messages
To get a message we use the receive() method of the receiver class.

amReceiver.receive(AmMessage messageObject, AmSender senderObject,
AmMessage selectionmessageObject, AmPolicy policyObject);
110 MQSeries Programming Patterns

There are four parameters in this call but only the messageObject is always
required. The received message is going to be stored in this parameter. If a
response is requested by the sending application, then we will have to specify a
senderObject. The policyObject is used to specify things such as the wait
interval, or whether or not data conversion is required. If we need to retrieve a
specific message based on the correlation ID, then we will have to specify the
selectionmessageObject. We mentioned before that when a message is sent, it
has to be converted to an array of bytes, so when receiving a message we need
to read that array of bytes.

In order to read the array of bytes we use the readBytes() method of the
message class. Example 4-15 shows how to retrieve a message.

Example 4-15 Retrieving a message

public static void main()
{
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;
AmReceiver myReceiver = null;
AmMessage myReceiveMSG = null;
AmMessage mySendMSG = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“ITSO.SAMPLE.POLICY”);
myReceiveMSG = mySession.createMessage(“ITSO.SAMPLE.MESSAGE.NAME”);
myReceiver.receive(MyReceiveMSG);
String sampleMessage = new
String(MyReceiveMSG.readbytes(myReceiveMSG.getDataLength()));
}

Publishing messages
There are some steps that need to be done to publish a message. Once
message and publisher objects are opened, we need to create a new topic for
the message. This topic is just a word that describes the data that will be
published. We create a topic using the addTopic() method of the message class.

The only parameter required is the topicName, which as we mentioned before is
a word that describes the data that’s going to be published.

messageObject.addTopic(String topicName)
 Chapter 4. Programming with AMI 111

After adding the topic, we can publish the message. To publish the message we
use the publish() method of the publisher class.

The messageObject is the object that contains the message that will be
published. We can omit the receiverObject only if the policy doesn’t specify
implicit registration of the publisher. The messageObject should always be
specified. If the policyObject is not specified, then the default definition will be
used.

Example 4-16 shows sample code of how to publish a message. In this example
the policyObject is not specified; therefore the default definition will be used. The
default definition doesn’t require an implicit registration of the publisher, so no
receiverObject is required.

Example 4-16 Publishing a message

Create and open required objects (session, policy, message and publisher)

string pubMessage=”SUNNY”;

mySendMSG.addTopic(“Weather”);
mySendMSG.writeBytes(pubMessage.getBytes());

myPublisher.publish(mySendMSG);

Subscribing messages
For subscribe messages, the application needs to send a request for the
information that it is interested in. This is done by including the topic(s) within the
request. Once that request is done, the subscriber can receive information from
many different publishers, and the information received can also be sent to other
subscribers. To include a topic in a request, we use the addTopic() method of the
message class.

Where topicName is a name that identifies the data that the subscriber
application is interested in. This call will have to be used for each topic that the
application wishes to subscribe to. Once the application has defined all the
topics, we send the subscription request using the subscribe() method of the
subscriber class.

publisherObject.publish(AmMessage messageObject, AmReceiver
receiverObject, AmPolicy policyObject)

messageObject.addTopic(String topicName)
112 MQSeries Programming Patterns

The messageObject is the object that we added topics to using the addTopic()
method. This parameter is optional. Publications matching the subscription
request are sent to the receiverObject. However, this parameter is not always
required. Another way to receive the publications that match the request is by
issuing the receive() method of the subscriber class.

The policyObject may or may not be specified. If specified, the policy contains
options such as anonymous registration, retrieve only new publications, etc. If is
not specified, then the default policy will be used. If the receiverObject was not
specified during the subscription request, the publications can be retrieved using
the receive() method.

The messageObject will contain all the messages that have been published, and
gets reset implicitly before the messages are received. The
selectionMessageObject is used only if we want to select a specific message
based on the correlation ID. If it is not specified, then the first available message
is received. The policyObject may or may not be specified.

Once we have received all the messages that met the criteria specified in the
subscription request or if no more messages are needed, the application can
unsubscribe or in other words send a request, so no more messages are sent.

The application can send a request to unsubscribe from all the topics that it
initially requested or just from a particular topic. This is done by issuing the
unsubscribe() method of the subscribe class.

The messageObject contains the topic(s) to which the unsubscribe request
applies. If a confirmation to the unsubscribe request is expected, a
receiverObject will have to be passed. Just as in previous calls, the policy may or
may not be specified. Example 4-17 shows how the calls that we saw in this
section are applied.

Example 4-17 Subscribing messages

int iCounter = 0;

subscriberObject.subscribe(AmMessage messageObject, AmReceiver
receiverObject, AmPolicy policyObject)

subscriberObject.receive(AmMessage messageObject, AmMessage
selectionmessageObject, AmPolicy policyObject

subscribeObject.unsubscribe(AmMessage messageObject, AmReceiver
receiverObject, AmPolicy policyObject)
 Chapter 4. Programming with AMI 113

String topic = ”Weather”;

mySendMSG.addTopic(“Weather”);
mySubscriber.subscribe(mySendMSG, myPolicy);
// Only 5 messages are expected
for (iCounter = 0; iCounter < 5; iCounter++)

mySubscriber.receive(myReceiveMSG, myPolicy);
String myRequest = new
String(myReceiveMSG.readBytes(myReceiveMSG.getDataLength()));
System.out.println(myRequest);

}

// The application has received all the messages that it wanted so it proceeds
// to send an unsubscribe request.
mySubscriber.unsubscribe(mySendMSG, myPolicy);

4.5.4 Deleting the session and closing the connection
After we have finished working with the queue manager applications, we can
proceed to close the objects. This is achieved by using the close() method of
each of the objects that were used. Another alternative is to close only the
session object. Once this object is closed, the rest of the objects will be closed.
However, it is strongly recommended that you explicitly close all of the objects
that were opened.

The only parameter that is expected by all the close() methods is the
policyObject. Remember that the policyObject also contains close options, such
as delete dynamic queue on close, among others. For more information, refer to
the MQSeries Application Messaging Interface documentation.

Note: The last object that must be closed is the sessionObject. Once the
sessionObject is closed, the rest of the references will be invalid.

subscriberObject.close(AmPolicy policy Object);

sessionObject.close(AmPolicy policy Object);

receiverObject.close(AmPolicy policy Object);

publisherObject.close(AmPolicy policy Object);

distributionlistObject.close(AmPolicy policy Object);
114 MQSeries Programming Patterns

4.6 How AMI compares to MQI
Now that we have talked about the different APIs that MQSeries offers, we can
talk about how they compare with each other. In this section we compare AMI
with MQI.

With MQI both the message destination and the message options for
send/receive are managed by the application, while with AMI, they are managed
by the policies. MQI offers full MQSeries function support and is concerned
exclusively with message transport. AMI offers reduced MQSeries function and
provides additional functionality.

The programming interface for MQI is low level (fewer verbs but many structures)
and the APIs are similar across the different languages (C, C++, Java, and
COBOL). AMI has a high-level programming interface, which means that there
are more verbs but fewer structures and the API has a natural style to each
individual language. MQI is transport specific, while AMI is transport
independent.

The MQI is IBM proprietary while a subset of the AMI complies with the Open
Applications Group/Open Applications Middleware API standard (C++ and Java).

4.7 Transaction management
In order for the messages sent and received by AMI to be part of a transactional
unit of work, the syncpoint attribute of the policy must be specified by the
administrator using the AMI administration tool. By default, the syncpoint
attribute is set to off. This attribute can be found in the General tab of the policy
definition.

The API calls used to control the transaction depend on the type of transaction
that is being used. There are two different scenarios:

� When the only resource is the MQSeries message:

In this scenario, the transaction is started by the first message sent or
received under syncpoint control, as specified in the policy for the send or
receive objects. Multiple messages can be included in the same unit of work.
The transaction can be committed by using the commit() method of the
session object, or it can be backed out by using the rollback() method of the
session object.

Example 4-18 shows an example of syncpoint control where the MQSeries
messages are the only resource.
 Chapter 4. Programming with AMI 115

Example 4-18 Syncpoint control

public static void main()
{
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;
AmReceiver myReceiver = null;
AmMessage myReceiveMSG = null;
AmMessage mySendMSG = null;

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“ITSO.SAMPLE.POLICY”);
myReceiveMSG = mySession.createMessage(“ITSO.SAMPLE.MESSAGE.NAME”);
myReceiver.receive(MyReceiveMSG);
// If no failures were found commit the action
mySession.commit(myPolicy);
String sampleMessage = new
String(MyReceiveMSG.readbytes(myReceiveMSG.getDataLength()));
// If some problems were found, don’t retrieve the message
mySession.rollback(myPolicy);
}

� MQSeries as an XA transaction coordinator.

The transaction must be started explicitly using the begin() method of the
AmSession class before the first recoverable resource (such as a relational
database) is changed. The unit of work can then be committed by using the
commit() method of the AmSession class or backed out by using the
rollback() method of the AmSession class. Example 4-19 shows an example
where MQSeries is an XA transaction coordinator.

Example 4-19 MQSeries as an XA transaction coordinator

public static void main()
{
AmSessionFactory mySessionFactory = null;
AmSession mySession = null;
AmPolicy myPolicy = null;
AmSender mySender = null;
AmMessage mySendMSG = null;

// Connect to the database

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“ITSO.SESSION.NAME”);
myPolicy = mySession.createPolicy(“AMT.SAMPLE.POLICY”);
mySender = mySession.createSender(“AMT.SENDER_NAME”);
116 MQSeries Programming Patterns

mySendMSG = mySession.createMessage(“ITSO.SAMPLE.MESSAGE.NAME”);

mySession.Begin(myPolicy);

// Update a table.

// If the update was successful then commit the action and send a message to
// another application
String sampleMessage = new String("Sample message");
mySendMSG.writeBytes(sampleMessage.getBytes());
mySender.send(mySendMSG);
mySession.commit(myPolicy);
// If problems occurred during the update, backout the changes
mySession.rollback(myPolicy);
}

Note: An additional scenario can be when an external transaction coordinator,
such as Tuxedo, is used. In this case, the transaction is controlled using the API
calls of an external transaction coordinator. Even though the AMI calls are not
used, the syncpoint attribute must still be specified in the policy used on the call.

4.8 Grouping
AMI allows a sequence of related messages to be included in, and sent as, a
message group. Group context information is sent with each message to allow
the message sequence to be preserved and made available to a receiving
application. In order to include messages in a group, the group status information
of the first and subsequent messages in the group must be set as follows:

� AMGRP_FIRST_MSG_IN_GROUP for the first message

� AMGRP_MIDDLEMSG_IN_GROUP for all the messages other than the first
and last

� AMGRP_LAST_MSG_IN_GRP for the last message

This can be achieved by using the setGroupStatus() method of the message
class.

The groupStatus can be any of the following values:

� AMGRP_MSG_NOT_IN_GROUP
� AMGRP_FIRST_MSG_IN_GRP
� AMGRP_MIDDLE_MSG_IN_GRP

messageObject.setGroupStatus(int groupStatus)
 Chapter 4. Programming with AMI 117

� AMGRP_LAST_MSG_IN_GROUP
� AMGRP_ONLY_MSG_IN_GROUP

If AMGRP_FIRST_MSG_IN_GROUP is out of sequence, the behavior of this
message is the same as for AMGRP_MIDDLE_MSG_IN_GRP.

Note: Once the application starts sending messages in a group, the group must
be completed before attempting to send any other messages that are not part of
the group.

4.9 Exploring the patterns
In this section we give examples of how AMI can be used to build applications
using the different programming patterns.

4.9.1 One-to-one or point-to-point

Send-and-forget
For a send-and-forget application, the following objects will have to be created:

� Session
� Policy
� Sender
� Message

The sample program that we discuss in this section follows the logic below:

� Create a session factory object.

� From the session factory, create a session object.

� From the session object, create a policy object, a message object, and a
sender object.

� Open the session and the sender objects.

� Populate the message object with data.

� Send the message object on the sender object using the send method.

� Close the sender object and then close the session object.

The first thing that we need to do before even attempting to connect to a queue
manager is to inform the Java virtual machine (JVM) to include the MQSeries
AMI Java classes. This can be achieved by using the import statement as shown
in Example 4-20. Keep in mind that the JAR file must be included in the
CLASSPATH environment variable on both the system where the application is
going to be compiled and on the one where it is going to be running.
118 MQSeries Programming Patterns

Example 4-20 Import statement

import com.ibm.mq.amt.*;

Once we have included the AMI JAR file, the next step is to define and initialize
the objects that are needed for a send-and-forget application. As we mentioned
before, when using this type of pattern we need session factory, session, sender,
message, and policy objects (one of each). It is recommended that the names of
the objects are descriptive so that it is easy to remember what they are used for.

Example 4-21 shows how to define and initialize the objects.

Example 4-21 Define and initialize

private AmSessionFactory mySessionFactory = null;
private AmSession mySession = null;
private AmSender mySender = null;
private AmMessage mySendMSG = null;
private AmPolicy myPolicy = null;

When creating an instance of a class, it is necessary to allocate memory to store
its data. When we define the instance at the beginning, the compiler is being told
that a variable with a certain name will be used in the class. Therefore, it is still
necessary to allocate memory for the variable. This can be achieved by using the
new operator. We need to allocate memory for the session factory object.

Example 4-22 shows how to define a reference to the session factory object
mySessionFactory that we defined in Example 4-21.

Example 4-22 Define reference

mySessionFactory = new AmSessionFactory();

Once there is memory allocated for the session factory, we can create the rest of
the objects needed for this type of pattern. We will use the createSession(),
createPolicy(), createSender() and createMessage() methods. Example 4-23
shows how to create the following objects:

� A session object called SAMPLE_SESSION_NAME
� A policy object called SAMPLE_POLICY_NAME
� A sender object called SAMPLE_SENDER_NAME
� A message object called SAMPLE_MESSAGE_NAME

Example 4-23 Create sample object

mySession = mySessionFactory.createSession(“SAMPLE_SESSION_NAME”);
myPolicy = mySession.createPolicy(“SAMPLE_POLICY_NAME”);
mySender = mySession.createSender(“SAMPLE_SENDER_NAME”);
mySendMSG = mySession.createMessage(“SAMPLE_MESSAGE_NAME”);
 Chapter 4. Programming with AMI 119

After the objects are created, the session and the sender objects must be
opened.

Example 4-24 shows how the session object mySession and the sender object
mySender are opened.

Example 4-24 Open objects

mySession.open(myPolicy);
mySender.open(myPolicy);

With the objects opened, we can send the message using the send() method. As
we mentioned in 4.5.3, “Basic operations” on page 109, that the message
content is always sent in byte form (Java’s native form), so the getBytes() method
(Java native method) will have to be used to convert the message into an array of
bytes before sending it. Once the message is converted, it then needs to be
written to the message object by using the writeBytes() method of the sender
class. Example 4-25 shows how to prepare and send a message using the coded
character set identifier 819.

Example 4-25 Prepare and send

String sampleMessage = new String("Sample message");
mySendMSG.setCCSID(819);
mySendMSG.writeBytes(sampleMessage.getBytes());
mySender.send(mySendMSG, myPolicy);

If no more messages are going to be sent, the objects will have to be closed by
issuing the close() method of the sender and session classes. Example 4-26
shows how to close the objects that were opened in Example 4-24 on page 120.

Example 4-26 Close objects

mySender.close(myPolicy);
mySession.close(myPolicy);

Request/Reply
For a request/reply application, the following objects will have to be created:

� Session
� Policy
� Sender
� Receiver
� Message

The sample program that we are going to discuss in this section follows the logic
listed below:

� Create a session factory object.
120 MQSeries Programming Patterns

� From the session factory object, create a session object.

� From the session object, create a policy object, a message object for sending,
a message object for receiving, a sender object, and a receiver object.

� Open the session object, receiver object, and the sender object.

� Populate the message object for sending with data using the writeBytes()
method.

� Send the message object for sending, on the sender object using the send
method passing the receiver object as the response service.

� Set the waitTime in the policy object to two seconds prior to issuing a receive
on the receiver object.

� Extract and display the data from the message object used for receiving using
the readBytes method, and use the message for sending as the selection
message.

� Close the receiver, the sender, and the session objects.

The first thing that we must do before even attempting to connect to a queue
manager is to inform the Java virtual machine (JVM) to include the MQSeries
AMI Java classes. This can be achieved by using the import statement as shown
in Example 4-27. Keep in mind that the JAR file must be included in the
CLASSPATH environment variable on both the system where the application is
going to be compiled and on the one where it is going to be running.

Example 4-27 Import statement

import com.ibm.mq.amt.*;

Once we have included the AMI JAR file, the next step will be to define and
initialize the objects that are needed for a request/reply application. As we
mentioned before, with this type of pattern we need a session factory, a session
object, a sender object, a receiver object, two message objects (one for sending
the message and another for the reply message) and a policy object. It is
recommended that the names of the objects be descriptive so that it is easier to
remember what they are used for.

Example 4-28 shows how to define and initialize the objects.

Example 4-28 Define and initialize

private AmSessionFactory mySessionFactory = null;
private AmSession mySession = null;
private AmSender mySender = null;
private AmReceiver myReceiver = null;
private AmMessage mySendMSG = null;
private AmMessage myReceiveMSG = null;
 Chapter 4. Programming with AMI 121

private AmPolicy myPolicy = null;

When creating an instance of a class, it is necessary to allocate memory to store
its data. When we define the instance at the beginning, the compiler is being told
that a variable with a certain name will be used in the class. Therefore, it is still
necessary to allocate memory for the variable. This can be achieved by using the
new operator. We need to allocate memory for the session factory object.

Example 4-29 shows how to define a reference to the session factory object
mySessionFactory that we defined in Example 4-28.

Example 4-29 Define reference

mySessionFactory = new AmSessionFactory();

Once there is memory allocated for the session factory, we can create the rest of
the objects needed for this type of pattern. We will use createSession,
createPolicy, createSender, createReceiver, and createMessage methods.

Example 4-30 shows how to create the following objects:

� A session object called SAMPLE_SESSION_NAME

� A policy object called SAMPLE_POLICY_NAME

� A sender object called SAMPLE_SENDER_NAME

� A receiver object SAMPLE_RECEIVER_NAME

� Two message objects: SAMPLE_SEND_MESSAGE_NAME (to send
messages) and SAMPLE_RECEIVE_MESSAGE_NAME (to receive the
reply)

Example 4-30 Creat objects

mySession = mySessionFactory.createSession(“SAMPLE_SESSION_NAME”);
myPolicy = mySession.createPolicy(“SAMPLE_POLICY_NAME”);
mySender = mySession.createSender(“SAMPLE_SENDER_NAME”);
myReceiver = mySession.createReceiver(“SAMPLE_RECEIVER_NAME”);
mySendMSG = mySession.createMessage(“SAMPLE_SEND_MESSAGE_NAME”);
myReceiveMSG = mySession.createMessage(“SAMPLE_RECEIVE_MESSAGE_NAME”);

After the objects are created, the session, the sender and the receiver objects
must be opened. Example 4-31 shows how the session object mySession, the
sender object mySender and the receiver object myReceiver are opened.

Example 4-31 Open objects

mySession.open(myPolicy);
mySender.open(myPolicy);
122 MQSeries Programming Patterns

myReceiver.open(myPolicy);

With the objects opened, we can send the message using the send() method. As
we mentioned in 4.5.3, “Basic operations” on page 109, the message content is
always sent in byte form (Java’s native form), so the getBytes() method (Java
native method) will have to be used to convert the message into an array of bytes
before sending it. Once the message is converted, it then needs to be written to
the message object by using the writeBytes() method of the sender class.

Example 4-32 shows how to prepare and send a message using the coded
character set identifier 819. Notice that this time we pass the receiver object to
indicate that we are expecting a reply message.

Example 4-32 Prepare and send

String sampleMessage = "Sample message";

mySendMSG.setCCSID(819);
mySendMSG.writeBytes(sampleMessage.getBytes());
mySender.send(mySendMSG, myReceiver, myPolicy);

To specify a wait time for the reply, the setWaitTime() method of the policy class
must be used. Once the message arrives, we use the receive() method of the
receiver class. To read the contents of the message object, the readBytes()
method of the receiver class must be used.

Example 4-33 shows how to receive a message. It also shows how to set up the
wait time to two seconds (two thousand milliseconds).

Example 4-33 Receive a message

myPolicy.setWaitTime(2000);
mySendMSG.setCCSID(AMCP_819);
myReceiver.receive(myReceiveMSG, mySendMSG, myPolicy);
replyMessage = new
String(myReceiveMSG.readBytes(myReceiveMSG.getDataLength()),"ISO8859_1");

If no more messages are going to be sent, then the objects must be closed by
issuing the close() method of the sender, receiver and session classes. The
close() method of the sender and receiver classes can be omitted because once
the session object is closed, the rest of the references are going to be invalid.
Example 4-34 shows how to close the objects that were opened in
Example 4-31.

Example 4-34 Close objects

mySender.close(myPolicy);
myReceiver.close(myPolicy);
 Chapter 4. Programming with AMI 123

mySession.close(myPolicy);

4.9.2 Publish/subscribe

Publisher
For a publisher application, the following objects have to be created:

� Session
� Policy
� Publisher
� Receiver
� Two message objects (one for the message that is going to be published and

another for the response)

The publisher sample program that we discuss in this section follows the logic
listed below:

� Create a session factory object.

� From the session factory, create a session object.

� From the session object, create a policy object, a message object for
publications, and a publisher object.

� Open the session object and the publisher.

� Add the topic to the publication message using the addTopic method.

� Select from topics and write the data into the outgoing message object using
the writeBytes method.

� Publish the information by calling the publish method of the publisher object.

� Reset the publication message.

� Wait for two seconds.

� Retrieve the publish response generated by the broker.

� Perform the previous six steps repeatedly until the maximum number of
publications specified at the beginning has been reached.

� Close the publisher and the session object.

The first thing that we need to do before even attempting to connect to a queue
manager is to inform the Java virtual machine (JVM) to include the MQSeries
AMI Java classes. This can be achieved by using the import statement as shown
in Example 4-35. Keep in mind that the JAR file must be included in the
CLASSPATH environment variable on both the system where the application is
going to be compiled and on the one where it is going to be running.
124 MQSeries Programming Patterns

Example 4-35 Import statement

import com.ibm.mq.amt.*;

Once we have included the AMI JAR file, the next step will be to define and
initialize the objects that are needed for a publisher application. As we mentioned
before, for this type of pattern we need a session factory, a session object, a
publisher object, a receiver object, two message objects (one for the message
that will be published and the other one for the response) and a policy object. It is
recommended that the names of the objects be descriptive so that it is easier to
remember what they are used for.

Example 4-36 shows how to define and initialize the objects.

Example 4-36 Define and initialize objects

private AmSessionFactory mySessionFactory = null;
private AmSession mySession = null;
private AmPublisher myPublisher = null;
private AmMessage mySendMSG = null;
private AmMessage myRespMSG = null;
private AmPolicy myPolicy = null;
private AmReceiver myRespReceiver = null;

When creating an instance of a class, it is necessary to allocate memory to store
its data. When we define the instance at the beginning, the compiler is being told
that a variable with a certain name will be used in the class. Therefore, it is still
necessary to allocate memory for the variable. This can be achieved by using the
new operator. We need to allocate memory for the session factory object.

Example 4-37 shows how to define a reference to the session factory object
mySessionFactory that we defined in Example 4-36.

Example 4-37 Define reference

mySessionFactory = new AmSessionFactory();

Once there is memory allocated for the session factory, we can create the rest of
the objects needed for this type of pattern. We will use the createSession(),
createPolicy(), createSender(), createReceiver() and createMessage() methods.

Example 4-38 shows how to create the following objects:

� A session object called SAMPLE_SESSION_NAME
� A policy object called SAMPLE_POLICY_NAME
� A publisher object called SAMPLE_PUBLISHER_NAME
� A receiver object called SAMPLE_RESPONSE_NAME
 Chapter 4. Programming with AMI 125

� Two message objects: SAMPLE_MESSAGE_NAME (for the message that
will be published) and SAMPLE_RESP_MESSAGE_NAME (for the
response)

Example 4-38 Create objects

mySession = mySessionFactory.createSession(“SAMPLE_SESSION_NAME”);
myPolicy = mySession.createPolicy(“SAMPLE_POLICY_NAME”);
myPublisher = mySession.createPublisher(“SAMPLE_PUBLISHER_NAME”);
myRespReceiver = mySession.createReceiver(“SAMPLE_RESPONSE_NAME”);
mySendMSG = mySession.createMessage(“SAMPLE_MESSAGE_NAME”);
myRespMSG = mySession.createMessage(“SAMPLE_RESP_MESSAGE_NAME”);

After the objects are created, the session, the publisher, and the receiver objects
must be opened.

Example 4-39 shows how the session object mySession, the publisher object
myPublisher, and the receiver object myRespReceiver are opened.

Example 4-39 Open objects

mySession.open(myPolicy);
myPublisher.open(myPolicy);
myRespReceiver.open(myPolicy);

The next step is to add the topic to the message object. This is achieved by using
the addTopic() method of the message object. Example 4-40 shows how to add
the topic “Weather” to the publisher object created in Example 4-38. It then sets
the message attribute CCSID and adds the data to the message object
mySendMSG, by converting the message string into bytes in the specified code
page.

Once the data is converted from a string to an array of byte, it then publishes the
contents of the message object. In the publish call, the receiver object
myRespReceiver is sent with the data, with the purpose of getting an
acknowledgment sent by the broker.

Example 4-40 Adding a topic

String sunny = "SUNNY again";
String showers = "WIND and SCATTERED showers";
String rain = "HEAVY RAIN";
String outlook[] = {sunny, showers, rain};
for (int i = 0, j = 0; i < SAMPLE_MAX_PUBLICATIONS; i++, j++)
{
try
{

mySendMSG.addTopic(“Weather”);
if (j == 3)
126 MQSeries Programming Patterns

{
j = 0;

}
String sampleMessage = new String(outlook[j]);
mySendMSG.setCCSID(819);
mySendMSG.writeBytes(sampleMessage.getBytes("ISO8859_1"));
myPublisher.publish(mySendMSG, myRespReceiver, myPolicy);
myRespReceiver.receive(myRespMSG, mySendMSG, myPolicy);
}
}

If no more messages are going to be published, the objects will have to be
closed by issuing the close() method of the publisher, receiver and session
classes. The close() method of the publisher and receiver classes can be omitted
because once the session object is closed, the rest of the references are going to
be invalid.

Example 4-41 shows how to close the objects that were opened in
Example 4-39.

Example 4-41 Closing objects

myPublisher.close(myPolicy);
myReceiver.close(myPolicy);
mySession.close(myPolicy);

Subscriber
For a subscriber application, the following objects should be created:

� Session
� Policy
� Subscriber
� Two message objects (one to send the subscription and another to receive

the publications)

The subscriber sample program that we discuss in this section follows the logic
listed below:

� Create a session factory object.

� From the session factory, create an session object.

� From the session, create a policy object, a message object for subscribing, a
message object for receiving the publications, and a subscriber object.

� Open the session object and the subscriber object.

� Add the topic to the subscription message using the addTopic method and
pass it on the subscribe method of the subscriber class.
 Chapter 4. Programming with AMI 127

� Call the receive method of the subscriber class.

� Read and display the publication data in the incoming message using the
readBytes method of the message object.

� Reset the message object used for receiving publications.

� Perform the previous three steps repeatedly until the maximum number of
publications specified has been reached.

� Unsubscribe from the topic.

� Close the subscriber and the session object.

The first thing we must do before even attempting to connect to a queue
manager is to inform the Java virtual machine (JVM) to include the MQSeries
AMI Java classes. This can be achieved by using the import statement as shown
in Example 4-42. Keep in mind that the JAR file must be included in the
CLASSPATH environment variable on both the system where the application will
be compiled and on the other system where it is going to be running.

Example 4-42 Importing

import com.ibm.mq.amt.*;

Once we have included the AMI JAR file, the next step will be to define and
initialize the objects that are needed for a subscriber application.

As we mentioned before, in this type of pattern we need a session factory,
session object, a subscriber object, two message objects (one to send the
subscription and another to receive the publications), and a policy object. It is
recommended that the names of the objects be descriptive so that it’s easier to
remember what they are used for.

Example 4-43 shows how to define and initialize the objects.

Example 4-43 Define and initialize

private AmSessionFactory mySessionFactory = null;
private AmSession mySession = null;
private AmSubscriber mySubscriber = null;
private AmMessage mySendMSG = null;
private AmMessage myReceiveMSG = null;
private AmPolicy myPolicy = null;

When creating an instance of a class, it is necessary to allocate memory to store
its data. When we define the instance at the beginning, the compiler is being told
that a variable with a certain name will be used in the class. Therefore, it is still
necessary to allocate memory for the variable. This can be achieved by using the
new operator. We need to allocate memory for the session factory object.
128 MQSeries Programming Patterns

Example 4-44 shows how to define a reference to the session factory object
mySessionFactory that we defined in Example 4-43.

Example 4-44 Define a reference

mySessionFactory = new AmSessionFactory();

Once there is memory allocated for the session factory, we can create the rest of
the objects needed for this type of pattern. We will use the createSession,
createPolicy, createSender, and createMessage methods.

Example 4-45 shows how to create the following objects:

� A session object called SAMPLE_SESSION_NAME
� A policy object called SAMPLE_POLICY_NAME
� A subscriber object called SAMPLE_SUBSCRIBER_NAME
� Two message objects, one called SAMPLE_RECEIVE_MESSAGE_NAME

(to receive the publications) and one called
SAMPLE_SEND_MESSAGE_NAME (to send the subscription request).

Example 4-45 Create objects

mySessionFactory = new AmSessionFactory();
mySession = mySessionFactory.createSession(“SAMPLE_SESSION_NAME”);
myPolicy = mySession.createPolicy(“SAMPLE_POLICY_NAME”);
mySubscriber = mySession.createSubscriber(“SAMPLE_SUBSCRIBER_NAME”);
myReceiveMSG = mySession.createMessage(“SAMPLE_RECEIVE_MESSAGE_NAME”);
mySendMSG = mySession.createMessage(“SAMPLE_SEND_MESSAGE_NAME”);

Once the objects are created, the session and the subscriber objects must be
opened.

Example 4-46 shows how the session object mySession and the subscriber
object mySubscriber are opened.

Example 4-46 Open session

mySession.open(myPolicy);
mySubscriber.open(myPolicy);

Example 4-47 shows how to reset the message object to its initial state before
getting the publications, the topic name will have to be added to the message
object using the addTopic() method of the message class. Once the topic is
added to mySendMSG, the subscription request is sent using the subscribe()
method of the subscriber object mySubscriber.

Example 4-47 Reset message object

String topic = "Weather";
try
 Chapter 4. Programming with AMI 129

{
mySendMSG.reset();
mySendMSG.addTopic(topic);
mySubscriber.subscribe(mySendMSG, myPolicy);

}

Now we need to retrieve some publications that have the topic Weather. To
accomplish this the receive() call of mySubscriber is used. Once received, the
publication has to be converted to an array of bytes. The readBytes() method of
the receiver object,

Example 4-48 is used to convert the message data from string to an array of
bytes. The message is then displayed on the screen and then the message
object is reset.

Example 4-48 Convert message

for (i = 0; i < SAMPLE_MAX_PUBLICATIONS; i++)
{
try
{

mySubscriber.receive(myReceiveMSG, myPolicy);
String myRequest = new
String(myReceiveMSG.readBytes(myReceiveMSG.getDataLength()),"ISO8859_1");
System.out.println(myRequest);
myReceiveMSG.reset();

}
}

In Example 4-49, the unsubscribe() method of the subscriber object
mySubscriber is used to send a message to the broker to deregister the
subscription.

Example 4-49 De-register

String topic = "Weather";

try
{
mySendMSG.reset();
mySendMSG.addTopic(topic);
// --
// Send the request.
// No response is expected so no receiver object is passed.
// --
mySubscriber.unsubscribe(mySendMSG, myPolicy);
}

130 MQSeries Programming Patterns

If no more messages are to be retrieved, the objects must be closed by issuing
the close() method of the subscriber and session classes. The close() method of
the subscriber class can be omitted because once the session object is closed,
the rest of the references are going to be invalid.

Example 4-50 shows how to close the objects that were opened in Example 4-46
on page 129.

Example 4-50 Close objects

mySubscriber.close(myPolicy);
mySession.close(myPolicy);

In this chapter we have seen how AMI can be used by application programmers
to build applications without needing to understand all the details of the
MQSeries Message Queue Interface.
 Chapter 4. Programming with AMI 131

132 MQSeries Programming Patterns

Chapter 5. Programming with C++

This chapter covers the MQSeries C++ API. This API is an object-oriented
extension of the MQI API explained in Chapter 3, “Programming with MQI” on
page 23. Here, we discuss the basic concepts of this API, the architectural
model, and the API availability.

Then we introduce some of the basic operations that can be performed using this
API, such as:

� Connecting and disconnecting from a queue manager
� Opening and closing MQSeries object (Queue object for example)
� Sending and getting messages from a queue
� Transaction management
� Message grouping

Finally we explore the implementation of the programming patterns explained in
Chapter 1, “Introduction and patterns” on page 3 using this API.

5

© Copyright IBM Corp. 2002. All rights reserved. 133

5.1 Overview
The MQSeries C++ interface is an extension of the MQI API presented in
Chapter 3, “Programming with MQI” on page 23. It gives the programmer a
object-oriented approach to the messaging interface in MQSeries.

Since this API is based on an object-oriented model, attributes and methods are
inherited to child classes as shown in Figure 5-1 on page 136 and Figure 5-2 on
page 137. In the following sections, we specify the methods as members of the
parent class so we can easily find them in the Using C++, SC33-1877, which
comes with the product.

5.1.1 Key features
The C++ MQI provides all the features available in the MQI API, such as getting,
putting, and browsing messages, it also allows users to inquire and set object
options.

Additionally it provides the following features:

� Automatic initialization of MQSeries data structures
� Just-in-time queue manager connection and queue opening
� Implicit queue closure and queue manager disconnection
� Dead-letter header transmission and receipt
� IMS Bridge header transmission and receipt
� Reference message header transmission and receipt
� Trigger message receipt
� CICS Bridge header transmission and receipt
� Work header transmission and receipt
� Client channel definition

5.2 Platforms and languages
The MQSeries C++ is available in the following server environments:

� MQSeries for AIX Version 5
� MQSeries for AS/400 Version 4 Release 2
� MQSeries for HP-UX Version 5
� MQSeries for OS/2 Warp Version 5
� MQSeries for Sun Solaris Version 5
� MQSeries for Windows NT Version 5
134 MQSeries Programming Patterns

It is also available in the following client environments:

� AIX
� HP-UX
� OS/2
� Sun Solaris
� Windows 3.1
� Windows 95
� Windows NT

5.3 Libraries
Table 5-1 shows the libraries required to compile the C++ program developed
using this API for each available platform.

Table 5-1 Libraries

The imqi.hpp header contains all the declarations require to use this API.

5.4 C++ architectural model
All classes in the API are inherited from the ImqError class, which allows an error
condition to be associated to each object. Figure 5-1 on page 136 and Figure 5-2
on page 137 show UML class diagrams of classes available in the API:

Platform Library

MQSeries for Windows NT IMQ*.LIB

MQSeries for AIX In a non-threaded application:
libimq*.a
In a threaded application:
libimq*_r.a

MQSeries for Sun Solaris imq*.so

MQSeries for HP-UX imq*.so
 Chapter 5. Programming with C++ 135

Figure 5-1 Queue management classes

Figure 5-2 on page 137 shows the item-related classes, these classes
encapsulate the message header structures provided in MQI such as the IMS
bridge header and the dead-letter header.
136 MQSeries Programming Patterns

Figure 5-2 Item handling classes

Both the queue management classes and the item handling classes use the
following classes and data types:

� The ImqBinary class which encapsulates byte arrays such as MQBYTE24.

� The ImqBoolean data type which is defined as typedef unsigned char
ImqBoolean.

� The ImqString class which encapsulates character arrays such as
MQCHAR64.

This API is an object oriented version of the MQSeries Interface presented in
Chapter 3, “Programming with MQI” on page 23. We will explain the API
architecture related to the features in the MQI API.
 Chapter 5. Programming with C++ 137

All the MQI data structure entities are subsumed within the appropriate object
classes, giving us access methods to the individual data structure fields.

The entities with handles inherited from the ImqObject class or one of its
descendants, and gives us encapsulated interfaces to the MQI. Additionally,
these objects exhibit intelligent behavior that can reduce the amount of method
calls compared to those required in a procedural MQI implementation. For
example, connections to a queue manager are created and discarded as
required.

The ImqMessage class encapsulates the MQMD data structure and also acts as
a holding point for user data and items by providing cached buffer facilities. The
cached buffer can either be supplied by the application or created automatically
by the system.

The ImqItem class represents items in a message body. Items are pieces of a
message that need to be processed sequentially and separately. Apart from the
regular user data, items might be a dead-letter header or a trigger message.
There is a class object for each item that corresponds to a recognizable
MQSeries message format. There is no class of object for user data, but it can be
written by specializing the ImqItem class. If not, user data processing is left to the
application.

The ImqChannel class encapsulates the channel definition (MQCD) structure
and lets us specify the connection options to be used in a client environment
when a ImqQueueManager::connect() is executed. More information about the
automatic channel definition options of MQSeries can be found in the MQSeries
Intercommunication book.

5.5 Programming with the C++ API
We will now explain how the basic MQSeries operation, such as connecting to a
queue manager, opening a queue and sending or receiving messages, can be
achieved using this API.

5.5.1 Connecting to the queue manager
To connect to a queue manager we will use the ImqQueueManager class, which
encapsulates the MQSeries queue manager object.

The name of the queue manager can be provided in the constructor call, or by
using the setName method of the ImqQueueManager class.

ImqQueueManager qmanager;
qmanager.setName(name);
138 MQSeries Programming Patterns

or

ImqQueueManager *pmanager = new ImqQueueManager(name);

Then the connection can be established using the connect method of the
ImqQueueManager.

qmanager.connect();

Information about the queue manager can be accessed using the
ImqQueueManager interface.

5.5.2 Opening MQSeries objects
MQSeries objects can be opened using the ImqObject or ImqQueue classes
depending on if the object is a queue, or another type of object.

Generally, the ImqQueue class will be used, unless some object attributes have
to be inquired or set.

Opening queues
The ImqQueue class encapsulates the MQSeries queue object and adds some
intelligence to the queue object behavior.

Before any put or get operation can be performed in a queue, the queue
manager holding the queue must be assigned to the ImqQueue object using the
setConnectionReference method of the ImqQueue class.

ImqQueue pqueue;

pqueue.setConnectionReference(pmanager);

The queue name can be provided during the object construction or using the
setName method of the ImqObject class.

pqueue.setName(queuename);

Queues will be automatically opened with the required options when a put or get
method invocation is issued, meaning that no explicit open operations are
required. The ImqQueue object will close and reopen the queue if the actual
open options do not match the requirement to perform an operation on the
queue.

In some cases this can cause some additional overhead, or some problems,
depending on the type of queue that is being opened.

Note: We will be using the pmanager object throughout the rest of this
chapter.
 Chapter 5. Programming with C++ 139

To avoid the automatic closing and reopening of the queue, we must directly set
the opening options by using the setOpenOptions, or the openFor methods of the
ImqObject class. A queue can also be opened explicitly using the open method
of the ImqObject class, but if the open options have been specified it will not give
any major advantage over the implicit open provided by this interface.

pqueue.setOpenOptions(MQOO_OUTPUT | MQOO_INPUT_SHARED);

or

pqueue.openFor(MQOO_OUTPUT | MQOO_INPUT_SHARED);

The openFor method incrementally adds the open options specified to those
actually assign to the object. The default open option for a ImqQueue object is
MQOO_INQUIRE.

Opening dynamic queues
Dynamic queues cannot be closed by a reopen automatically because a close
operation on a dynamic queue will destroy the queue. Therefore to open a
dynamic queue we must specify the open options.

The name of the model queue is specified with the setName method of the
ImqObject class and the dynamic queue name or its prefix (in the same way it
would be specified using the MQI API , “Opening queues” on page 35) can be
specified with the setDynamicQueueName method of the ImqQueue class.

The actual name of the dynamic queue can be obtained with the
dynamicQueueName method after the queue has been opened.

pqueue.setDynamicQueueName(dynamicqueuename);

Opening distribution lists
Distribution lists are managed by the ImqDistributionList class, which inherits
from the ImqQueue class.

Any number of ImqQueue objects can be associated with a ImqDistributionList
object using the setDistributionListReference method of the ImqQueue class.

Before opening the distribution list the associated queues must be assigned the
name of the queue and the queue manager that holds it, as shown in
Example 5-1 on page 140.

Example 5-1 Opening distribution lists

ImqDistributionList dlist;
ImqQueue queueA, queueB;
ImqString queueManagerName(pmanager.name());
140 MQSeries Programming Patterns

// Set queue manager connection reference
queueA.setConnectionReference(pmanager);
queueB.setConnectionReference(pmanager);

// Set target queue names
queueA.setName(queuename1);
queueB.setName(queuename2);

// Assign the queue manager name
queueA.setQueueManagerName(queueManagerName);
queueB.setQueueManagerName(queueManagerName);

// Associate the queues with the distribution list.
queueA.setDistributionListReference(dlist);
queueB.setDistributionListReference(dlist);

Once the queues of the distribution lists have been set, the distribution list can be
opened and operated just as any other ImqQueue object.

5.5.3 Closing MQSeries objects
MQSeries objects are automatically closed when the corresponding ImqObject is
deleted.

5.5.4 Disconnecting from the queue manager
A disconnect operation is implicitly performed when the ImqQueueManager
object is deleted.

5.5.5 Putting messages on a queue
Messages can be put to a ImqQueue or ImqDistributionList object using the put
method of the ImqQueue class.

The put method provides two interfaces:

The message data is managed by the ImqMessage class. The ImqMessage
class inherits from the ImqMessageTracker class, which encapsulates the
MQMD data structure, and the ImqCache class which handles the message data
buffer.

ImqBoolean put(ImqMessage & msg);

ImqBoolean put(ImqMessage & msg, ImqPutMessageOptions & pmo);
 Chapter 5. Programming with C++ 141

The message identification can be set using the setMessageId method of the
ImqMessageTracker class.

ImqMessage msg;

msg.setMessageId(msgId);

In the same way, there are methods to access the correlation ID and the group
ID.

The messageId, correlationId and groupId variables must by created using the
ImqBinary class. This class encapsulates the BYTExx data types that are used in
the MQI which provide some methods to perform basic operations.

Example 5-2 shows how to create a binary object using the ImqBinay class.

Example 5-2 Creating a ImqBinary object

ImqBinary correlationId ;
MQBYTE24 byteId = “BYTEID1234”;

// Set the value of the ImqBinary object
correlationId.set(byteId,sizeof(byteId));

Preparing message data
This API differs from the MQI API in the way message data is prepared and
handled.

In MQI message data is managed completely by the application, from allocating
the correct buffer to store the data, to processing the different possible headers
in the message when it is read.

In the C++ API some buffered cache functionality has been added, and this
buffer is managed by the ImqCache object. A buffer is associated to each
message (ImqMessage object), by inheritance.

The buffer is, by default, provided by the ImqCache object automatically or it can
be provided by the application using any of the following ImqCache object
methods:

� useEmptyBuffer: This method allows the application to assign a fixed-length
empty buffer to the ImqMessage object. The message length will be set to
zero automatically and the buffer will be clear, unless the actual message
length is assigned.

ImqMessage msg;
char pszBuffer[24]= “Hello World”;

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));
142 MQSeries Programming Patterns

msg.setFormat(MQFMT_STRING);
msg.setMessageLength(12);
or
char pszBuffer[12];

msg.useEmptyBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);

� useFullBuffer: This method allows the application to assign an already
prepared message buffer to the ImqMessage object. The buffer will not be
clear and the message length will be set to the length provided in the method
invocation.

ImqMessage msg;
char pszBuffer[] = “Hello world”;

msg.useFullBuffer(pszBuffer, sizeof(pszBuffer));
msg.setFormat(MQFMT_STRING);

The message buffer can be reused and the number to bytes transmitted can be
varied by setting the message length using the setMessageLength method of the
ImqCache class.

The advantage of an application supplying the message buffer is that no data
copying is required, since the data can be prepared directly in the buffer.

To set the ImqCache object back to the automatic buffer facility, the application
can call the useEmptyBuffer with a null buffer pointer and a length of zero (0).

When supplied automatically, the buffer extends to accommodate the message
as it grows. This gives more flexibility when the message length is unknown
before it is prepared. The message (data) can be copied into the buffer using the
ImqCache write method.

msg.write(12, “Hello world”);

Items can be copied to the buffer using the ImqMessage writeItem method. For
example you might want to add a dead-letter header to a message and put it in
the dead-letter queue.

Example 5-3 shows how to create a ImqDeadLetterHeader and then insert it at
the beginning of an existing message.

Example 5-3 Creating a dead-letter header

ImqDeadLetterHeader header;

// Set up the dead-letter header information.
header.setDestinationQueueManagerName(pmanager.name());
header.setDestinationQueueName(pqueue.name());
 Chapter 5. Programming with C++ 143

header.setPutApplicationName(/*?*/);
header.setPutApplicationType(/*?*/);
header.setPutDate(/* TODAY */);
header.setPutTime(/* NOW */);
header.setDeadLetterReasonCode(/* REASON */);

// Insert the dead-letter header information. This will vary
// the encoding, character set and format of the message.
// Message data is moved along, past the header.
msg.writeItem(header);

Using additional options in the put method
The put method of the ImqQueue class provides two interfaces as shown at the
beginning of this section.

Additional options must frequently be specified when putting a message onto a
queue. These options can be specified by calling the put method with a second
parameter in the form of a ImqPutMessageOptions object.

The ImqPutMessageOptions class encapsulates the MQPMO data structure,
which allows the application to specify some additional options such as
sync-point control or message context.

Example 5-4 on page 144 shows how to start and set the syncpoint participation
option to true. This will start a local queue manager transaction that can be
ended by using the commit or backout methods of the ImqQueueManager class.
The transactional management with C++ will be further explained in the following
section.

Example 5-4 Putting a message with syncPoint participation

ImqQueue pqueue;
ImqMessage msg;
ImqPutMessageOptions pmo;

// This sets the put message options to participate
// in a syncpoint transaction.
pmo.setSyncPointParticipation(TRUE);

pqueue.put(msg, pmo);

Please refer to the Using C++ manual for more information about the options
available with the ImqQueue class.
144 MQSeries Programming Patterns

5.5.6 Getting messages from a queue
It is possible to get messages from a ImqQueue object using the get method
provided by this class.

The ImqQueue get method provides four interfaces:

The message information is contained in the ImqMessage object after the
method invocation.

By default, the message buffer is provided by the system and can be obtained by
using the dataPointer or bufferPointer methods. The message data length can be
obtained by using the dataLength method of the ImqCache class.

pqueue.get(msg);

char *pszDataPointer = msg.dataPointer(); /* Address. */
int iDataLength = msg.dataLength(); /* Length. */

If the application wants to provide a fixed-length buffer to receive the message
data, the ImqCache useEmptyBuffer method can be used before using the
ImqQueue get method. The message length will be restricted to that of the given
buffer, so long messages must be considered during the application design.

char pszBuffer[BUFFER_LENGTH];

pqueue.useEmptyBuffer(pszBuffer, BUFFER_LENGTH);
pqueue.get(msg);

In this case, the actual buffer pointer pszBuffer can always be used, but it is
recommendable to use the dataPointer method to assure portability.

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options);

ImqBoolean get(ImqMessage & msg);

ImqBoolean get(ImqMessage & msg, ImqGetMessageOptions & options,
const size_t buffer-size);

ImqBoolean get(ImqMessage & msg, const size_t buffer-size);

Note: After each get method invocation, the physical location of the data
buffer can be changed, so it is not recommended to use the actual buffer
pointer to access data. Instead the data pointer should be re-assigned using
either the dataPointer or bufferPointer methods.
 Chapter 5. Programming with C++ 145

Reading message data
Once the message has been received, message data can be in the form of items
or raw user data, depending on the format of the message. Items are pieces of
data that have to be processed separately and sequentially.

The message format can be validated using the ImqMessage formatIs method.

If the message format represents any known message header data structure,
that structure can be retrieved from the message buffer using the ImqMessage
readItem method. There are three predefined message headers in this API:

� Dead letter header (ImqDeadLetterHeader class).
� IMS bridge header (ImqIMSBridgeHeader).
� Reference header (ImqReferenceHeader).

Each of these corresponds to an MQSeries defined message format. Other types
of format can be defined by the user by specifying the ImqItem class.

if (msg.formatIs(MQFMT_DEAD_LETTER_HEADER)) {
ImqDeadLetterHeader header;

// The readItem method must be called with the
// right class of object pointer.

if (msg.readItem(header)) {
// Perform the corresponding operation for this item type.

}
}

If the message format is unknown, then the message data can be directly access
using the dataPointer method as explained before.

Additional get method options
The ImqGetMessageOptions class provides additional information for the
message retrieval process, such as:

� Wait interval for the get operation
� Match options
� Message options
� Syncpoint participation
� Group status
� Segmentation status
146 MQSeries Programming Patterns

The ImqGetMessageOptions setOptions method can be used to specify any of
the MQI available message get options. One of the options more commonly used
is the MQGMO_WAIT option which will enable a wait interval for the get
operation to finish. This way if the expected message hasn’t yet arrived on the
queue, the get method will wait for the amount of time specified using the
setWaitInterval method of the ImqGetMessageOptions class, before returning an
error.

Example 5-5 shows how to get a message from a queue with an unlimited wait
option.

Example 5-5 Getting a message with a wait option

ImqGetMessageOptions gmo;
ImqMessage msg;

gmo.setOptions(MQGMO_WAIT);

// Set the wait interval to unlimited meaning that the get operation
// will wait until one message appears in the queue.
gmo.setWaitInterval(MQWI_UNLIMITED);

pqueue.get(msg,gmo);

Getting a specific message from the queue
A specific message can be identified by any combination of this message
attributes as found in the ImqMessageTracker class:

� MessageId
� CorrelationId
� GroupId

These options have to be specified in the ImqMessage object passed in the get
method invocation.

The ImqGetMessageOptions class gives the application a way to specify which
options will be used during the message search.

gmo.setMatchOptions(MQMO_MATCH_MSG_ID);
msg.setMessageId(msgId);
If (pqueue.get(msg,gmo)) {

// Perform any operation with this message
}

If more than one message matches the given criteria, the first message of that
set will be returned, and consecutive calls to the get method will give access to
all the messages.
 Chapter 5. Programming with C++ 147

The message object information will change after a get method call if a message
matching the criteria is found, otherwise the function will return false.

5.6 Advance topics
Here we present some of the advance functionality of the C++ API, specifically
the browsing messages functionality, and the inquiring and setting object
attributes functionality.

5.6.1 Browsing messages on a queue
Messages on a queue can be browsed using an ImqQueue get method. The
ImqQueue object must be open using the MQOO_BROWSE open option. That
can be done using the setOpenOptions or the openFor method as described in
“Opening queues” on page 139.

pqueue.setOpenOptions(MQOO_BROWSE);

or

pqueue.openFor(MQOO_BROWSE);

After the queue object has been opened for browse, the ImqQueue get method
has to be called with an ImqGetMessageOptions object with the following
options:

� MQGMO_BROWSE_FIRST message option, if you want the browse cursor
to be positioned at the first message that matches the criteria specified in the
ImqMessage object.

� MQGMO_BROWSE_NEXT message option, if you want the browse cursor to
move to the next message that matches the criteria specified in the
ImqMessage object.

The get method will return an updated version of the ImqMessage object with the
information of the current message pointed to by the browse cursor, without
removing it from the queue.

When the queue object has just been opened, the browse cursor points to the
first message in the queue, so the MQGMO_BROWSE_NEXT option will have
the same behavior as the MQGMO_BROWSE_FIRST.

gmo.setOptions(MQGMO_BROWSE_NEXT | MQGMO_WAIT);

// Browsing all the messages in the queue in sequential order
while (pqueue.get(msg,gmo)) {

// Perform some operation with the message.
...
148 MQSeries Programming Patterns

// The MessageId and CorrelationId must be set to null before
// the next get method call.
msg.setMessageId(MQMI_NONE);
msg.setCorrelId(MQCI_NONE);

}

Messages can be browsed in either physical or logical order.

Physical ordering can be FIFO (First-in/First-out) or FIFO within Priority ordering,
depending on the value of the Message Delivery Sequence
(MsgDeliverySequence) for the queue.

Logical order means that messages belonging to a group will be presented
sequentially in their correct position in the queue, even if any message of a
different group appears in the queue before the last message of that group is
received.

To browse messages in a logical order, we must specify the
MQGMO_LOGICAL_ORDER option when calling the get method.

gmo.setOptions(MQGMO_BROWSE_NEXT | MQGMO_WAIT | MQGMO_LOGICAL_ORDER);

For additional information about this topic, please refer to the Application
Programming Guide that comes with MQSeries.

5.6.2 Inquiring about and setting object attributes

Inquiring about attributes
Inquiring about, and setting object attributes with this API is a straight forward
operation when compared with the MQI API. Here, the ImqObject class offers
two inquire methods that inquire any integer or character attribute indicated.

The int-attr and char-attr parameters give the attribute MQIA_* and MQCA_*
indexes.

The integer object attributes value is returned in the value parameter, as shown
in the following code fragment:

MQLONG depth;

pqueue.inquire(MQIA_CURRENT_Q_DEPTH, depth);

ImqBoolean inquire(const MQLONG int-attr, MQLONG & value);

ImqBoolean inquire(const MQLONG char-attr, char * & buffer, const size_t
length);
 Chapter 5. Programming with C++ 149

printf(“The current queue depth is: %d“,depth);

The character object attributes value is returned in the buffer parameter, as
shown in the following code fragment:

char qname[MQCA_Q_MGR_NAME_LENGTH];

pqueue.inquire(MQCA_Q_MGR_NAME, qname, MQCA_Q_MGR_NAME_LENGTH);
printf(“The current queue depth is: %s“,qname);

The buffer must be large enough to hold the attribute value. The length of the
buffer must be specified in the length parameter.

Setting object attributes
To set queue attributes, the ImqObject provides two set methods just like those
provided to inquire attributes that we have already explained.

The following code fragment shows the possible usage of these functions:

// This instruction inhibits any put operation on any type of queue.
pqueue.set(MQIA_INHIBIT_PUT,MQQA_PUT_INHIBITED);

or

// This instruction inhibits any get operation on any local queue.
pqueue.set(MQIA_INHIBIT_GET,MQQA_GET_INHIBITED);

Only the following queue attributes value can be modified using these functions:

� Available for all types of queue

– MQIA_INHIBIT_PUT

� Available for local queues

– MQCA_TRIGGER_DATA
– MQIA_DIST_LISTS
– MQIA_INHIBIT_GET
– MQIA_TRIGGER_CONTROL
– MQIA_TRIGGER_DEPTH
– MQIA_TRIGGER_MSG_PRIORITY
– MQIA_TRIGGER_TYPE
– MQIA_DIST_LISTS

ImqBoolean set(const MQLONG int-attr, MQLONG & value);

ImqBoolean set(const MQLONG char-attr, char * buffer, const size_t length);
150 MQSeries Programming Patterns

� Available for alias queues

– MQIA_INHIBIT_GET

5.7 Transaction management
Local resource manager transactions can be started by setting the syncpoint
participation in the ImqPutMessages or ImqGetMessageOptions classes.

ImqPutMessageOptions pmo;

//This starts a local resource manager transaction
pmo.setSyncPointParticipation(TRUE);
pqueue.put(msg,pmo);

or

ImqGetMessageOptions gmo;

//This starts a local resource manager transaction
gmo.setSyncPointParticipation(TRUE);
pqueue.get(msg,gmo);

The ImqQueueManager object provides the transaction management interfaces
required to begin, commit or rollback distributed transactions with this API.

A distributed transaction starts with a ImqQueueManager begin method call. Any
operation within a transaction begin and end call is part of the transaction.

// This call starts a distributed transaction
pmanager.begin();

Distributed transaction can only be started if there are no other local or
distributed transactions.

Both, local and distributed transaction can be terminated with a
ImqQueueManager commit method call if the transaction was successful, or with
a ImqQueueManager backout method call.

pmanager.commit();

or

pmanager.backout();
 Chapter 5. Programming with C++ 151

5.8 Message grouping
Messages can be grouped using the ImqMessageTracker setGroupId method.
We also have to identify messages in the group by giving the
MQMF_MSG_IN_GROUP or MQMF_LAST_MSG_IN_GROUP flags using the
ImqMessage setMessageFlags method.

Example 5-6 on page 152 shows how to send three messages as a group. The
first two messages will be sent using the MQMF_MSG_IN_GROUP flag while the
third message will use the MQMF_LAST_MSG_IN_GROUP.

Example 5-6 Message grouping

// Setting put message options and message descriptor versions.
BYTE24 MY_GROUP_ID = “123456”;
ImqPutMessageOptions pmo;
ImqMessage message;
ImqBinary grpId;

// Set the grpId binary object value
grpId.set(MY_GROUP_ID,sizeof(MY_GROUP_ID);

// Sets the put message options to generate a new message ID for every
// message put into the queue and to put the messages in their logical
// order into the queue.
pmo.setOptions(MQPMO_LOGICAL_ORDER | MQPMO_NEW_MSG_ID);
message.setMessageFlags(MQMF_MSG_IN_GROUP);

// Assign the GroupId
message.setGroupId(grpId);

// Puts a first message of the group
message.write(“First messsage”);
pqueue.put(message,pmo);

// Puts a second message of the group
message.write(“Middle messsage”);
pqueue.put(message,pmo);

// Puts the final message of the group. The final message must
// be identified by giving the MQMF_LAST_MSG_IN_GROUP flags in the message
// descriptor structure.
message.setMessageFlags(MQMF_LAST_MSG_IN_GROUP);
message.write(“Last messsage”);
pqueue.put(message,pmo);
152 MQSeries Programming Patterns

These messages can then be retrieved from the queue in their logical order
using the MQGMO_LOGICAL_ORDER option in the setOptions method of the
ImqGetMessageOptions class.

ImqPutMessageOptions pmo;
ImqMessage message;
char buffer[101];

message.setEmptyBuffer(buffer, sizeof(buffer)-1);

// Set the get message options required for this operation. Specially
// the MQGMO_LOGICAL_ORDER
gmo.setOptions(MQGMO_LOGICAL_ORDER + MQGMO_WAIT + MQGMO_CONVERT);
gmo.setWaitInterval(1500); /* 15 second limit for waiting */

// We want to get all the messages on the queue so no match options will
// be needed.
gmo.setMatchOptions(MQGMO_NONE);

while (pqueue.completionCode() != MQCC_FAILED) {
md.setEncoding(MQENC_NATIVE);
md.setCharacterSet(MQCCSI_Q_MGR);

if (pqueue.get(message)) {

// Shows the message data
buffer[message.dataLength] = 0;
printf("message <%s>\n", buffer);

/* report reason, if any */
if (queue.reasonCode() != MQRC_NONE) {

// general report for other reasons
printf("MQGET ended with reason code %ld\n", Reason);

} else {
if (queue.reasonCode() == MQRC_NO_MSG_AVAILABLE) {

// special report for normal end
printf("no more messages\n");

}
}
}

Additionally, the queue manager can control whether or not a message group
has been received completely. If we want only complete message groups to
appear in the queue, then the MQGMO_ALL_MSGS_AVAILABLE option can be
set in the ImqGetMessageOptions setOptions method, along with the others.
 Chapter 5. Programming with C++ 153

5.9 Exploring the patterns
All the patterns explained in Chapter 1, “Introduction and patterns” on page 3 can
be developed using this API. In the following section we will show simple
examples of each one of these pattern. These examples were developed based
upon the MQI C examples in Chapter 3, “Programming with MQI” on page 23, so
the user can compare the examples and appreciate how the MQI API maps to
the C++ API.

All these examples were developed using the Microsoft Visual Studio
environment.

5.9.1 The one-to-one or point-to-point pattern
As explained in Chapter 1, “Introduction and patterns” on page 3, the one-to-one
or point-to-point programming pattern can be used for a send-and-forget
scenario as well as a request/reply scenario or any combination of those.

Here, we present a simple example of each one of them. The message data
used in these examples do not have any business logic, but the examples can be
easily modified to be applied in a real world situation.

Send-and-forget
This simple example of the send-and-forget pattern contains two programs. The
first one acts as the message sender while the second one acts as the message
consumer. No response or acknowledgment is expected by the sender and
nothing is sent back by the consumer.

The sender program shown in Example 5-7 follows the logical flow below:

� Connect to a queue manager
� Open the PTP.QUEUE.LOCAL queue for output
� Prepare a message to be sent
� Send the message to the opened queue
� Close the queue
� Disconnect from the queue manager

Example 5-7 Sender program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define QMGR_NAME “SAMPLE.QMGR1”
#define Q_NAME “PTP.QUEUE.LOCAL”
154 MQSeries Programming Patterns

#include <imqi.hpp> // MQSeries MQI

int main (int argc, char * * argv) {
ImqQueueManager mgr; // Queue manager
ImqQueue queue; // Queue
ImqMessage msg; // Data message
char buffer[256]; // Message buffer

printf("Send/Forget Sample\n");

// Sets the queue manager name
mgr.setName(QMGR_NAME);

if (! mgr.connect()) {
/* stop if it failed */
printf("ImqQueueManager::connect ended with reason code %d\n",

(int)mgr.reasonCode());
exit((int)mgr.reasonCode());

}

// Associate queue with queue manager.
queue.setConnectionReference(mgr);

// Sets the name of the target queue
queue.setName(Q_NAME);
printf("target queue is %s\n", Q_NAME);

// Open the target message queue for output
queue.setOpenOptions(MQOO_OUTPUT/* open queue for output */

+ MQOO_FAIL_IF_QUIESCING); /* but not if MQM stopping */
// Explicitly opens the queue
queue.open();

/* report reason, if any; stop if failed */
if (queue.reasonCode()) {

printf("ImqQueue::open ended with reason code %d\n",
(int)queue.reasonCode());

}

if (queue.completionCode() == MQCC_FAILED) {
printf("unable to open queue for output\n");

}

// Prepare the message to be sent
msg.useEmptyBuffer(buffer, sizeof(buffer));
msg.setFormat(MQFMT_STRING); /* character string format */
strcpy(buffer,"This is a simple Send/Forget sample");
msg.setMessageLength(strlen(buffer));
 Chapter 5. Programming with C++ 155

if (! queue.put(msg)) {
 /* report reason, if any */

printf("ImqQueue::put ended with reason code %d\n",
(int)queue.reasonCode());

}

// Close the target queue (if it was opened)
if (! queue.close()) {

/* report reason, if any */
printf("ImqQueue::close ended with reason code %d\n",

(int)queue.reasonCode());
}

// Disconnect from MQM if not already disconnected (the
// ImqQueueManager object handles this situation automatically)
if (! mgr.disconnect()) {

/* report reason, if any */
printf("ImqQueueManager::disconnect ended with reason code %d\n",

(int)mgr.reasonCode());
}

printf("Send/Forget Sample end\n");
return(0);

}

The consumer program shown in Example 5-8 follows the logical flow below:

� Connect to a queue manager
� Open the PTP.QUEUE.LOCAL queue for output
� Set the data buffer for the incoming message
� Get the message from the opened queue
� Print the message received
� Close the queue
� Disconnect from the queue manager

Example 5-8 Consumer program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define QMGR_NAME"SAMPLE.QMGR1.ITSOE"
#define Q_NAME"PTP.QUEUE.LOCAL"

#include <imqi.hpp> // MQSeries MQI

int main (int argc, char * * argv) {
ImqQueueManager mgr; // Queue manager
156 MQSeries Programming Patterns

ImqQueue queue; // Queue
ImqMessage msg; // Data message
ImqGetMessageOptions gmo; // Get Message Options
char buffer[256]; // Message buffer

printf("Send/Forget Sample\n");

// Sets the queue manager name
mgr.setName(QMGR_NAME);

if (! mgr.connect()) {
/* stop if it failed */
printf("ImqQueueManager::connect ended with reason code %d\n",

(int)mgr.reasonCode());
exit((int)mgr.reasonCode());

}

// Associate queue with queue manager.
queue.setConnectionReference(mgr);

// Sets the name of the target queue
queue.setName(Q_NAME);
printf("target queue is %s\n", Q_NAME);

// Open the target message queue for input
queue.setOpenOptions(MQOO_INPUT_SHARED/* open queue for input */

+ MQOO_FAIL_IF_QUIESCING); /* but not if MQM stopping */
// Explicitly opens the queue
queue.open();

/* report reason, if any; stop if failed */
if (queue.reasonCode()) {

printf("ImqQueue::open ended with reason code %d\n",
(int)queue.reasonCode());

}

if (queue.completionCode() == MQCC_FAILED) {
printf("unable to open queue for output\n");

}

// Sets the get message options wait interval
gmo.setOptions(MQGMO_WAIT);/* Enables wait for this get operation*/
gmo.setWaitInterval(MQWI_UNLIMITED);/* Sets wait interval to unlimited */

// Prepare the message to be sent
msg.useEmptyBuffer(buffer, sizeof(buffer));

if (! queue.get(msg, gmo)) {
 /* report reason, if any */
 Chapter 5. Programming with C++ 157

printf("ImqQueue::put ended with reason code %d\n",
(int)queue.reasonCode());

}

// Close the target queue (if it was opened)
if (! queue.close()) {

/* report reason, if any */
printf("ImqQueue::close ended with reason code %d\n",

(int)queue.reasonCode());
}

// Disconnect from MQM if not already disconnected (the
// ImqQueueManager object handles this situation automatically)
if (! mgr.disconnect()) {

/* report reason, if any */
printf("ImqQueueManager::disconnect ended with reason code %d\n",

(int)mgr.reasonCode());
}

printf("Send/Forget Sample end\n");
return(0);

}

Request/reply
As in the send-and-forget pattern sample, this request/reply sample contains two
programs. The first one sends a request message to a queue called
PTP.QUEUE.LOCAL and waits for a response in another queue
PTP.REPLY.QUEUE.LOCAL. The second program acts as the reply program. It
starts reading messages from a queue called PTP.QUEUE.LOCAL and
whenever a message is put onto that queue it sends a generic response to the
PTP.REPLY.QUEUE.LOCAL queue.

The request program shown in Example 5-9 follows the logical flow below:

� Connect to a queue manager
� Open the request (PTP.QUEUE.LOCAL) queue for output
� Open the reply (PTP.REPLY.QUEUE.LOCAL) queue for input
� Prepare the request message to be sent
� Send the request message to the opened queue
� Set the data buffer for the incoming message
� Assign the correlId used to identify the reply message
� Wait for the reply message in the reply queue
� Show the received reply message data.
� Close the queues
� Disconnect from the queue manager
158 MQSeries Programming Patterns

Example 5-9 Request program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define QMGR_NAME “SAMPLE.QMGR1.ITSOE”
#define REQUEST_Q_NAME “PTP.QUEUE.LOCAL”
#define REPLY_Q_NAME “PTP.REPLY.QUEUE.LOCAL”

#include <imqi.hpp> // MQSeries MQI

int main (int argc, char * * argv) {
ImqQueueManager mgr; // Queue manager
ImqQueue requestQueue; // Request Queue
ImqQueue replyQueue; // Reply Queue
ImqGetMessageOptions gmo; // Get Message Options
ImqMessage pmsg; // Data message
ImqMessage gmsg; // Data message
char buffer[256]; // Message buffer

printf("Request/Reply Sample\n");

mgr.setName(QMGR_NAME);

if (! mgr.connect()) {
// stop if it failed
printf("ImqQueueManager::connect ended with reason code %d\n",

(int)mgr.reasonCode());
exit((int)mgr.reasonCode());

}

// Associate queues with queue manager.
requestQueue.setConnectionReference(mgr);
replyQueue.setConnectionReference(mgr);

// set the name of the request and reply queues
requestQueue.setName(REQUEST_Q_NAME);
printf("Request queue is %s\n", REQUEST_Q_NAME);
replyQueue.setName(REPLY_Q_NAME);
printf("Request queue is %s\n", REPLY_Q_NAME);

// Open the request message queue for output
requestQueue.setOpenOptions(MQOO_OUTPUT/* open queue for output */

+ MQOO_FAIL_IF_QUIESCING);/* but not if MQM stopping */
requestQueue.open();

// report reason, if any; stop if failed
if (requestQueue.reasonCode()) {
 Chapter 5. Programming with C++ 159

printf("ImqQueue::open ended with reason code %d\n",
(int)requestQueue.reasonCode());

}

if (requestQueue.completionCode() == MQCC_FAILED) {
printf("unable to open queue for output\n");

} else {

// Open the reply message queue for input
replyQueue.setOpenOptions(MQOO_INPUT_SHARED/* open queue for input

*/
+ MQOO_FAIL_IF_QUIESCING); /* but not if MQM stopping */

replyQueue.open();

/* report reason, if any; stop if failed */
if (replyQueue.reasonCode()) {

printf("ImqQueue::open ended with reason code %d\n",
(int)replyQueue.reasonCode());

}

if (replyQueue.completionCode() == MQCC_FAILED) {
printf("unable to open queue for output\n");

} else {
// Sets the request message buffer and type
pmsg.useEmptyBuffer(buffer, sizeof(buffer));
pmsg.setFormat(MQFMT_STRING); /* character string format */
strcpy(buffer,"This is a simple Request message");
pmsg.setMessageLength(strlen(buffer));

if (! requestQueue.put(pmsg)) {
// report reason, if any
printf("ImqQueue::put ended with reason code %d\n",

(int)requestQueue.reasonCode());
} else {

// waits for reply

// Setting the get message options
gmo.setOptions(MQGMO_WAIT);
// Enables wait for this get operation
gmo.setWaitInterval(MQWI_UNLIMITED);
// Sets wait interval to unlimited
gmo.setMatchOptions(MQMO_MATCH_CORREL_ID);
// Sets the message match options to correlId

// Sets the reply message buffer and type
gmsg.useEmptyBuffer(buffer, sizeof(buffer));
gmsg.setFormat(MQFMT_STRING); /* character string format */

// Sets correlId use to selected reply message from the queue
160 MQSeries Programming Patterns

gmsg.setCorrelationId(pmsg.correlationId());

if (! replyQueue.get(gmsg, gmo)) {
// report reason, if any
printf("ImqQueue::put ended with reason code %d\n",

(int)replyQueue.reasonCode());
} else {

// Add terminator to message string
buffer[gmsg.dataLength()] = 0;
printf("The reply received is: %s\n",buffer);

}
}
// Close the target queue (if it was opened)
if (! replyQueue.close()) {

/* report reason, if any */
printf("ImqQueue::close ended with reason code %d\n",

(int)replyQueue.reasonCode());
}

}

// Close the target queue (if it was opened)
if (! requestQueue.close()) {

/* report reason, if any */
printf("ImqQueue::close ended with reason code %d\n",

(int)requestQueue.reasonCode());
}

}

// Disconnect from MQM if not already disconnected (the
// ImqQueueManager object handles this situation automatically)
if (! mgr.disconnect()) {

/* report reason, if any */
printf("ImqQueueManager::disconnect ended with reason code %d\n",

(int)mgr.reasonCode());
}

printf("Request/Reply Sample end\n");
return(0);

};

The reply program shown in Example 5-10 follows the logical flow below:

� Connect to a queue manager
� Open the request (PTP.QUEUE.LOCAL) queue for input
� Open the reply (PTP.REPLY.QUEUE.LOCAL) queue for output
� Set the data buffer for the incoming message
� Wait for the request message in the request queue
� Show the received request message data
 Chapter 5. Programming with C++ 161

� Prepare the reply message to be sent
� Assign the correlId used to identify the reply message
� Send the reply message to the opened queue
� Close the queues
� Disconnect from the queue manager

Example 5-10 Reply program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define QMGR_NAME"SAMPLE.QMGR1.ITSOE"
#define REQUEST_Q_NAME"PTP.QUEUE.LOCAL"
#define REPLY_Q_NAME"PTP.REPLY.QUEUE.LOCAL"

#include <imqi.hpp> // MQSeries MQI

int main (int argc, char * * argv) {
ImqQueueManager mgr; // Queue manager
ImqQueue requestQueue; // Request Queue
ImqQueue replyQueue; // Reply Queue
ImqGetMessageOptions gmo; // Get Message Options
ImqMessage pmsg; // Data message
ImqMessage gmsg; // Data message
char buffer[256]; // Message buffer

printf("Request/Reply Sample\n");

mgr.setName(QMGR_NAME);

if (! mgr.connect()) {
// stop if it failed
printf("ImqQueueManager::connect ended with reason code %d\n",

(int)mgr.reasonCode());
exit((int)mgr.reasonCode());

}

// Associate queues with queue manager.
requestQueue.setConnectionReference(mgr);
replyQueue.setConnectionReference(mgr);

// set the name of the request and reply queues
requestQueue.setName(REQUEST_Q_NAME);
printf("Request queue is %s\n", REQUEST_Q_NAME);
replyQueue.setName(REPLY_Q_NAME);
printf("Request queue is %s\n", REPLY_Q_NAME);

// Open the request message queue for input
162 MQSeries Programming Patterns

requestQueue.setOpenOptions(MQOO_INPUT_SHARED
//open queue for input

+ MQOO_FAIL_IF_QUIESCING);/* but not if MQM stopping */
requestQueue.open();

/* report reason, if any; stop if failed */
if (requestQueue.reasonCode()) {

printf("ImqQueue::open ended with reason code %d\n",
(int)requestQueue.reasonCode());

}

if (requestQueue.completionCode() == MQCC_FAILED) {
printf("unable to open queue for output\n");

} else {

// Open the reply message queue for output
replyQueue.setOpenOptions(MQOO_OUTPUT/* open queue for output */

+ MQOO_FAIL_IF_QUIESCING);/* but not if MQM stopping */
replyQueue.open();

/* report reason, if any; stop if failed */
if (replyQueue.reasonCode()) {

printf("ImqQueue::open ended with reason code %d\n",
(int)replyQueue.reasonCode());

}

if (replyQueue.completionCode() == MQCC_FAILED) {
printf("unable to open queue for output\n");

} else {
// Sets the get message options wait interval
gmo.setOptions(MQGMO_WAIT);/* Enables wait for this get operation*/
gmo.setWaitInterval(MQWI_UNLIMITED);
// Sets wait interval to unlimited

// Sets the reply message buffer and type
gmsg.useEmptyBuffer(buffer, sizeof(buffer));
gmsg.setFormat(MQFMT_STRING); /* character string format */

// Sets the correlId use to select the reply message from the queue

if (! requestQueue.get(gmsg, gmo)) {
// report reason, if any
printf("ImqQueue::put ended with reason code %d\n",

(int)requestQueue.reasonCode());
} else {

// Add terminator to message string
buffer[gmsg.dataLength()] = 0;
printf("The request received is: %s\n",buffer);
 Chapter 5. Programming with C++ 163

// Set the message buffer in the ImqMessage object
pmsg.useEmptyBuffer(buffer, sizeof(buffer));
pmsg.setFormat(MQFMT_STRING); /* character string format */
strcpy(buffer,"This is a simple Reply message");
pmsg.setMessageLength(strlen(buffer));

// Sets the correlationId of the message being sent
pmsg.setCorrelationId(gmsg.correlationId());

if (! replyQueue.put(pmsg)) {
// report reason, if any
printf("ImqQueue::put ended with reason code %d\n",

(int)replyQueue.reasonCode());
}

}

// Close the target queue (if it was opened)
if (! replyQueue.close()) {

/* report reason, if any */
printf("ImqQueue::close ended with reason code %d\n",

(int)replyQueue.reasonCode());
}

}

// Close the target queue (if it was opened)
if (! requestQueue.close()) {

/* report reason, if any */
printf("ImqQueue::close ended with reason code %d\n",

(int)requestQueue.reasonCode());
}

}

// Disconnect from MQM if not already disconnected (the
// ImqQueueManager object handles this situation automatically)
if (! mgr.disconnect()) {

/* report reason, if any */
printf("ImqQueueManager::disconnect ended with reason code %d\n",

(int)mgr.reasonCode());
}

printf("Send/Forget Sample end\n");
return(0);

};
164 MQSeries Programming Patterns

5.9.2 The publish/subscribe pattern
The publish/subscribe pattern has two major components, as explained in
Chapter 1, “Introduction and patterns” on page 3:

� The Publisher: This component is the one that actually publish the topics in
the broker stream.

� The Subscriber: This component represent a client of the publisher or
publishers. It subscribes to one or many topics, and waits for any publication
on these topics to be sent to it by the broker.

We will explore these two components with a simple example where a publisher
program publishes some data on a given topic and any number of subscribers
will receive that data and show it in the standard output.

Publisher
The publisher program presented here is divided into three functions:

� The BuildMQRFHeader function

This function constructs an MQRFH data structure and appends the required
value/pair at the end of this structure.

� The PutPublication function

This function is responsible for sending the actual publication commands to
the broker using the stream queue.

� The main function

This function constructs the publication message and sends it to the stream
queue.

Example 5-11 shows the BuildMQRHeader function described above. This code
was taken from the C samples that come with the publish/subscribe SupportPac.

Example 5-11 The BuildMQRFHeader function

void BuildMQRFHeader(PMQBYTE pStart,
 PMQLONG pDataLength,
 MQCHAR TopicType[]) {

PMQRFH pRFHeader = (PMQRFH)pStart;
PMQCHAR pNameValueString;

/***/
/* Clear the buffer before we start (initialise to nulls). */
/***/
memset((PMQBYTE)pStart, 0, *pDataLength);

/***/
 Chapter 5. Programming with C++ 165

/* Copy the MQRFH default values into the start of the buffer. */
/***/
memcpy(pRFHeader, &DefaultMQRFH, (size_t)MQRFH_STRUC_LENGTH_FIXED);

/***/
/* Set the format of the user data to be MQFMT_STRING, even though */
/* some of the publications use a structure to pass user data the */
/* data within this structure is entirely MQCHAR and can be */
/* treated as MQFMT_STRING by the data conversion routines. */
/***/
memcpy(pRFHeader->Format, MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

/***/
/* As we have user data following the MQRFH we must set the CCSID */
/* of the user data in the MQRFH for data conversion to be able to */
/* be performed by the queue manager. As we do not currently know */
/* the CCSID that we are running in we can tell MQSeries that the */
/* data that follows the MQRFH is in the same CCSID as the MQRFH. */
/* The MQRFH will default to the CCSID of the queue manager */
/* (MQCCSI_Q_MGR), so the user data will also inherit this CCSID. */
/***/
pRFHeader->CodedCharSetId = MQCCSI_INHERIT;

/***/
/* Start the NameValueString directly after the MQRFH structure. */
/***/
pNameValueString = (MQCHAR *)pRFHeader + MQRFH_STRUC_LENGTH_FIXED;

/***/
/* Add the command to the start of the NameValueString, this must */
/* always be the first MQPS name token in the string. */
/***/
strcpy(pNameValueString, MQPS_COMMAND_B);
strcat(pNameValueString, MQPS_PUBLISH);

/***/
/* Add the publication options and topic to the NameValueString. */
/* We specify 'no registration' because neither sample application */
/* is concerned with who is currently publishing, it also allows */
/* us not to specify an identity queue (we are also publishing */
/* datagrams so no replies will be sent either) which means that */
/* we do not have to define a queue for this sample to use. */
/***/
strcat(pNameValueString, MQPS_PUBLICATION_OPTIONS_B);
strcat(pNameValueString, MQPS_NO_REGISTRATION);

strcat(pNameValueString, MQPS_TOPIC_B);
strcat(pNameValueString, TOPIC_PREFIX);
strcat(pNameValueString, TopicType);
166 MQSeries Programming Patterns

/***/
/* Any user data that follows the NameValueString should start on */
/* a word boundary, to ensure all platforms are satisfied we align */
/* to a 16 byte boundary. */
/* As the NameValueString has been null terminated (by using */
/* strcat) any characters between the end of the string and the */
/* next 16 byte boundary will be ignored by the broker, but if the */
/* message is to be data converted we advise any extra characters */
/* are set to nulls ('\0') or blanks (' '). In this sample we have */
/* initialised the whole message block to nulls before we started */
/* so all extra characters will be nulls by default. */
/***/
*pDataLength = MQRFH_STRUC_LENGTH_FIXED

 + ((strlen(pNameValueString)+15)/16)*16;
pRFHeader->StrucLength = *pDataLength;

}

The PutPublication function shown in Example 5-12 follows the logical flow
below:

� Sets the message format to MQFMT_RF_HEADER

� Sets the message type to MQMT_DATAGRAM

� Sets the message persistence

� Set the MQPMO_NEW_MSG_ID option to request a new message Id for the
message that is being sent

� Set the message buffer using the useFullBuffer method

� Sends the message and returns true if successful

Example 5-12 The PutPublication function

bool PutPublication(ImqQueue& queue, PMQBYTE pMessage, MQLONG
messageLength) {

ImqPutMessageOptions pmo;
ImqMessage msg;

// Sets message format, type, persistence and options
msg.setFormat(MQFMT_RF_HEADER);
msg.setMessageType(MQMT_DATAGRAM);
msg.setPersistence(MQPER_PERSISTENT);
pmo.setOptions(MQPMO_NEW_MSG_ID);

// Sets the message buffer as a full buffer
msg.useFullBuffer((char *) pMessage,messageLength);

// Puts the message in the queue and return true if it was successful
 Chapter 5. Programming with C++ 167

if (queue.put(msg,pmo))
return true;

else
return false;

}

The main function shown in Example 5-13 follows the logical flow below:

� Connect to the queue manager
� Open the stream queue for output
� Allocate the message data buffer
� Build the MQRFH Header structure using the BuildMQRFHeader function
� Append the publication data to the end of the MQRFH Header structure
� Put the publication in the stream queue using the PutPublication function

Example 5-13 The main function (Publisher example)

int main(int argc, char **argv) {
ImqQueueManager mgr; // Queue manager
ImqQueue streamQueue; // Request Queue

PMQBYTE pMessageBlock = NULL;
MQLONG messageLength;
char defaultText[] = "HELLO WORLD";
char text[256];

printf("Publisher Sample\n");

if (argc > 1) {
strcpy(text,argv[1]);

}

mgr.setName(QMGR_NAME);

if (! mgr.connect()) {
// stop if it failed
printf("ImqQueueManager::connect ended with reason code %d\n",

(int)mgr.reasonCode());
exit((int)mgr.reasonCode());

} else {
// Associate queues with queue manager.
streamQueue.setConnectionReference(mgr);
streamQueue.setName(STREAM_Q_NAME);

streamQueue.setOpenOptions(MQOO_OUTPUT
// open queue for output

+ MQOO_FAIL_IF_QUIESCING);/* but not if MQM stopping */
streamQueue.open();
168 MQSeries Programming Patterns

if (streamQueue.reasonCode()) {
printf("ImqQueue::open ended with reason code %d\n",

(int)streamQueue.reasonCode());
}

if (streamQueue.completionCode() == MQCC_FAILED) {
printf("unable to open queue for output\n");

} else {
messageLength = DEFAULT_MESSAGE_SIZE;
pMessageBlock = (PMQBYTE)malloc(messageLength);

BuildMQRFHeader(pMessageBlock
 , &messageLength
 , "TEST");

strcpy((char *)pMessageBlock+messageLength,text);
messageLength += strlen(text);

if (PutPublication(streamQueue, pMessageBlock, messageLength)) {
printf("The message has been publish successfully.\n");

} else {
printf("The message could not be publish.\n");

}
}

}

return (0);
}

Subscriber
The subscriber program presented here is basically divided into four functions:

� The BuildMQRFHeader function

This function constructs an MQRFH data structure and appends the required
value/pair at the end of this structure.

� The CheckForResponse function

This function waits for a subscription acknowledgment from the broker, and
validates that the subscription has been successfully accepted.

� The PubSubCommand function

This function creates and send a publish/subscribe command to the broker
and checks for the broker response using the CheckForResponse function

� The main function
 Chapter 5. Programming with C++ 169

This function provides two possible behaviors depending on the number of
parameters used when calling this program:

– If two parameters are specified, the first parameter will be taken as the
client queue where the broker will send the publications for the client, and
the second parameter will be used as the correlationId used to identify the
publication of that specific client.

The main function will register the client to the topic and will start an infinite
loop getting publications.

– If a third parameter is specified the main function will de-register the client
from the topic and finish.

The CheckResponse function uses the PrintNameValueString function which
basically prints the name/value pairs to the screen. This function is not shown
here but may be found in the additional materials that be downloaded from the
IBM Redbooks Web site.

Example 5-14 shows the BuildMQRHeader function described above. This code
was taken from the C samples that come with the publish/subscribe SupportPac.

Example 5-14 The BuildMQRFHeader (Subscriber example)

void BuildMQRFHeader(PMQBYTE pStart
 , PMQLONG pDataLength
 , PMQCHAR pCommand
 , MQLONG regOptions
 , MQLONG pubOptions
 , PMQCHAR pTopic) {

PMQRFH pRFHeader = (PMQRFH)pStart;
PMQCHAR pNameValueString;

/***/
/* Clear the buffer before we start (initialise to nulls). */
/***/
memset((PMQBYTE)pStart, '\0', *pDataLength);

/***/
/* Copy the MQRFH default values into the start of the buffer. */
/***/
memcpy(pRFHeader, &DefaultMQRFH, (size_t)MQRFH_STRUC_LENGTH_FIXED);

/***/
/* Start the NameValueString directly after the MQRFH structure. */
/***/
pNameValueString = (MQCHAR *)pRFHeader + MQRFH_STRUC_LENGTH_FIXED;

/***/
/* Add the command to the start of the NameValueString, this must */
170 MQSeries Programming Patterns

/* always be the first MQPS name token in the string. */
/***/
strcpy(pNameValueString, MQPS_COMMAND_B);
strcat(pNameValueString, pCommand);

/***/
/* If registration options were supplied add them to the string, */
/* for ease of implementation we insert the decimal representation */
/* of the options into the string as opposed to the character */
/* strings supplied for each option. */
/***/
if(regOptions != 0) {

strcat(pNameValueString, MQPS_REGISTRATION_OPTIONS_B);
sprintf(pNameValueString, "%s %d", pNameValueString, regOptions);

}

/***/
/* If publication options were supplied add them to the string, */
/* for ease of implementation we insert the decimal representation */
/* of the options into the string as opposed to the character */
/* strings supplied for each option. */
/***/
if(pubOptions != 0) {

strcat(pNameValueString, MQPS_PUBLICATION_OPTIONS_B);
sprintf(pNameValueString, "%s %d", pNameValueString, pubOptions);

}

/***/
/* Add the stream name to the NameValueString (optional for */
/* publications). */
/***/
strcat(pNameValueString, MQPS_STREAM_NAME_B);
strcat(pNameValueString, STREAM_QUEUE);

/***/
/* Add the topic to the NameValueString. */
/***/
strcat(pNameValueString, MQPS_TOPIC_B);
strcat(pNameValueString, pTopic);

/***/
/* Any user data that follows the NameValueString should start on */
/* a word boundary, to ensure all platforms are satisfied we align */
/* to a 16 byte boundary. */
/* As the NameValueString has been null terminated (by using */
/* strcat) any characters between the end of the string and the */
/* next 16 byte boundary will be ignored by the broker, but if the */
/* message is to be data converted we advise any extra characters */
/* are set to nulls ('\0') or blanks (' '). In this sample we have */
 Chapter 5. Programming with C++ 171

/* initialised the whole message block to nulls before we started */
/* so all extra characters will be nulls by default. */
/***/
*pDataLength = MQRFH_STRUC_LENGTH_FIXED

 + ((strlen(pNameValueString)+15)/16)*16;
pRFHeader->StrucLength = *pDataLength;

}

The CheckForResponse function shown in Example 5-15 follows the logical flow
below:

� Prepares the message buffer

� Set the message options such as correlationId and wait interval options

� Wait for a response from the broker

� If the response is not received return a fail value

� If the response is received it validates the format of the response message.

� Then extract the MQRFH Header structure from the message and validates
the completion code

� Show the response to the user if the subscription was not accepted

Example 5-15 The CheckForResponse function

MQLONG CheckForResponse(ImqQueue& queue,
ImqMessage msg,
PMQBYTE pMessageBlock,
MQLONG blockSize) {

ImqGetMessageOptions gmo;
MQLONG CompCode;
MQLONG Reason;
PMQRFH pMQRFHeader;
PMQCHAR pNameValueString;
PMQCHAR pInputNameValueString;
ULONG stringLength;

/***/
/* Wait for a response message to arrive on our subscriber queue, */
/* the response's correlId will be the same as the messageId that */
/* the original message was sent with (returned in the message */
/* object from the ImqQueue::put method call) so match against */
/* this. */
/***/
gmo.setOptions(MQGMO_WAIT + MQGMO_CONVERT);
gmo.setWaitInterval(MAX_RESPONSE_TIME);
172 MQSeries Programming Patterns

gmo.setMatchOptions(MQMO_MATCH_CORREL_ID);
msg.useEmptyBuffer((char *) pMessageBlock, blockSize);
msg.setCorrelationId();
msg.setMessageId();

queue.get(msg,gmo);

if(queue.completionCode() != MQCC_OK) {
printf("MQGET failed with CompCode %d and Reason %d\n",

 queue.completionCode(),
queue.reasonCode());

if(queue.reasonCode() == MQRC_NO_MSG_AVAILABLE)
printf("No response sent by broker, check broker is running.\n");

} else {
/***/
/* Check that the message is in the MQRFH format. */
/***/
if(msg.formatIs(MQFMT_RF_HEADER)) {

/***/
/* Locate the start of the NameValueString and its length. */
/***/
pMQRFHeader = (PMQRFH)pMessageBlock;
pNameValueString = (PMQCHAR)(pMessageBlock

 + MQRFH_STRUC_LENGTH_FIXED);
stringLength = pMQRFHeader->StrucLength

 - MQRFH_STRUC_LENGTH_FIXED;

/***/
/* The start of a response NameValueString is always in the */
/* same format: */
/* MQPSCompCode x MQPSReason y MQPSReasonText string ... */
/* We can scan the start of the string to check the CompCode */
/* and reason of the reply. */
/***/
sscanf(pNameValueString, "MQPSCompCode %d MQPSReason %d ",

 &CompCode, &Reason);
if(CompCode != MQCC_OK) {

/***/
/* One possible error is acceptable, MQRCCF_NO_RETAINED_MSG, */
/* which is returned from a Request Update when there is no */
/* retained message on the broker. This is an allowable */
/* error so we can continue as before. */
/***/
if(Reason == MQRCCF_NO_RETAINED_MSG) {

CompCode = MQCC_OK;
Reason = MQRC_NONE;

} else {
/***/
/* Otherwise, display the error message supplied with the */
 Chapter 5. Programming with C++ 173

/* user data that was returned, this will be the original */
/* commands NameValueString. */
/***/
/***/
/* A response NameValueString is ALWAYS NULL terminated, */
/* therefore, we can use printf to display it (as it is a */
/* string in the true sense of the word). We do not */
/* necessarily generate NULL terminated NameValueStrings */
/* so we use the PrintNameValueString function to display */
/* the NameValueString returned with the message, if any */
/* (most error responses do return the original */
/* NameValueString as user data). */
/***/
printf("Error response returned :\n");
printf(" %s\n",pNameValueString);
if(msg.dataLength() != (unsigned) pMQRFHeader->StrucLength) {

printf("Original Command String:\n");
pInputNameValueString =

 (PMQCHAR)(pMessageBlock + pMQRFHeader->StrucLength);
PrintNameValueString(pInputNameValueString,

 (msg.dataLength() - pMQRFHeader->StrucLength));
}

}
}

} else {
/***/
/* If the message is not in the MQRFH format we have the wrong */
/* message. */
/***/

printf("Unexpected message format: %.8s\n", msg.format());
CompCode = MQCC_FAILED;

}
}

return CompCode;
}

The PubSubCommand function shown in Example 5-16 on page 175 follows the
logical flow below:

� Build the MQRFH Header structure using the BuildMQRFHeader function

� Set message format and type

� Specify the replyTo queue for this message

� Request a new messgeId for this message

� Set the message buffer using the useFullBuffer method.
174 MQSeries Programming Patterns

� Assign the correlationId for the request message (this correlationId is going to
be used by the broker to send the message back to the subscriber).

� Put the command in the broker control queue

� Check for the broker response using the CheckForResponse function

Example 5-16 The PubSubCommand function

MQLONG PubSubCommand(ImqQueue &brokerQueue,
 ImqQueue &replyQueue,
 MQCHAR Command[],
 PMQCHAR pTopic,
 MQLONG topicLength,
 ImqBinary &pCorrelId,
 MQLONG regOptions

) {

ImqPutMessageOptions pmo;
ImqMessage msg;
MQLONG messageLength;
PMQBYTE pMessageBlock = NULL;
MQLONG CompCode = MQCC_FAILED;

/***/
/* Allocate a block of storage to hold the Command message. */
/***/
messageLength = DEFAULT_MESSAGE_SIZE;
pMessageBlock = (PMQBYTE)malloc(messageLength);

if(pMessageBlock == NULL) {
printf("Unable to allocate storage\n");
CompCode = MQCC_FAILED;

} else {
/***/
/* Define an MQRFH structure at the start of the allocated */
/* storage, fill in the required fields and generate the */
/* NameValueString that follows it. */
/***/
BuildMQRFHeader(pMessageBlock

 , &messageLength
 , Command
 , regOptions
 , MQPUBO_NONE
 , pTopic);

/***/
/* Send the command as a request so that a reply is returned to */
/* us on completion at the broker. */
/***/
 Chapter 5. Programming with C++ 175

msg.setFormat(MQFMT_RF_HEADER);
msg.setMessageType(MQMT_REQUEST);
/***/
/* Specify the subscriber's queue in the ReplyToQ of the MD. */
/* We have not put the subscriber's queue in the MQRFH */
/* NameValueString so the one in the ReplyToQ of the MD will be */
/* used as the identity of the subscriber. */
/***/
msg.setReplyToQueueName(ReplyToQueueName);
pmo.setOptions(MQPMO_NEW_MSG_ID);
/***/
/* All commands sent use the correlId as part of their identity. */
/***/
msg.useFullBuffer((char *) pMessageBlock, messageLength);
msg.setCorrelationId(pCorrelId);

/***/
/* Put the command message to the broker control queue. */
/***/
brokerQueue.put(msg, pmo);

if(brokerQueue.completionCode() != MQCC_OK)
printf("MQPUT failed with CompCode %d and Reason %d\n",

 brokerQueue.completionCode(), brokerQueue.reasonCode());
else {

/***/
/* The put was successful, now wait for a response from the */
/* broker to inform us if the command was accepted by the */
/* broker. */
/* We use our command storage block to receive the response */
/* into to save on allocating extra storage. */
/***/
CompCode = CheckForResponse(replyQueue, msg, pMessageBlock,
DEFAULT_MESSAGE_SIZE);

}
/***/
/* Free the storage. */
/***/
free(pMessageBlock);

}

return CompCode;
}

Example 5-17 on page 177 shows the subscriber main function. This function
follows the logical flow below:

� Connect to the queue manager
176 MQSeries Programming Patterns

� Open the three required queues (control, stream and client queues)

� If only two arguments are received:

– Send the registration command to the queue using the PubSubCommand
function

– Go into a infinite loop waiting for publications to arrive in the client queue.

� If a third argument is received, then it sends the de-registration command to
the broker using the PubSubCommand function and finishes

Example 5-17 The main function (Subscriber example)

int main(int argc, char **argv) {
ImqQueueManagermgr;
ImqQueue controlQueue;
ImqQueue streamQueue;
ImqQueue subscriberQueue;
ImqGetMessageOptionsgmo;
ImqMessage msg;

PMQBYTE pMessageBlock = NULL;
MQLONG messageLength;
MQCHAR32 subscriptionTopic;
PMQRFH pMQRFHeader;
PMQCHAR pNameValueString;
PMQBYTE pUserData;
MQLONG nameValueStringLength;
ImqBinary EventCorrelId;
MQBYTE24 byteId;

if (argc < 3) {
printf("Unexpected number of parameters\n");
return (-1);

}

controlQueue.setName(CONTROL_QUEUE);
streamQueue.setName(STREAM_QUEUE);
subscriberQueue.setName(argv[1]);

memset(byteId,0,24);
memcpy(byteId,argv[2],strlen(argv[2]));
EventCorrelId.set(byteId,sizeof(byteId));
ReplyToQueueName = (char *) argv[1];

 mgr.setName(QMGR_NAME);

if (!mgr.connect()) {
printf("MQCONN failed with CompCode %d and Reason %d\n",

mgr.completionCode(), mgr.reasonCode());
 Chapter 5. Programming with C++ 177

printf("Usage: amqsres <QManager>\n");
}

if(mgr.completionCode() == MQCC_OK) {

controlQueue.setOpenOptions(MQOO_OUTPUT);
streamQueue.setOpenOptions(MQOO_OUTPUT);
subscriberQueue.setOpenOptions(MQOO_INPUT_SHARED +
MQOO_FAIL_IF_QUIESCING);

controlQueue.setConnectionReference(mgr);
streamQueue.setConnectionReference(mgr);
subscriberQueue.setConnectionReference(mgr);

if (!controlQueue.open()) {
printf("MQOPEN failed to open with CompCode %d and Reason %d\n",

controlQueue.completionCode(), controlQueue.reasonCode());
printf("Usage: amqsres <QManager>\n");

}

if (!streamQueue.open()) {
printf("MQOPEN failed to open with CompCode %d and Reason %d\n",

streamQueue.completionCode(), streamQueue.reasonCode());
printf("Usage: amqsres <QManager>\n");

}

if (!subscriberQueue.open()) {
printf("MQOPEN failed to open with CompCode %d and Reason %d\n",

subscriberQueue.completionCode(), subscriberQueue.reasonCode());
printf("Usage: amqsres <QManager>\n");

}

}

if (argc > 3) {
strcpy(subscriptionTopic, TOPIC_PREFIX);
strcat(subscriptionTopic, "*");
PubSubCommand(controlQueue,subscriberQueue,

MQPS_DEREGISTER_SUBSCRIBER
 , subscriptionTopic
 , strlen(subscriptionTopic)
 , EventCorrelId
 , MQREGO_CORREL_ID_AS_IDENTITY);

} else {
strcpy(subscriptionTopic, TOPIC_PREFIX);
strcat(subscriptionTopic, "*");
if(PubSubCommand(controlQueue, subscriberQueue,

MQPS_REGISTER_SUBSCRIBER
, subscriptionTopic
178 MQSeries Programming Patterns

, strlen(subscriptionTopic)
, EventCorrelId
, MQREGO_CORREL_ID_AS_IDENTITY) == MQCC_OK) {

/***/
/* Allocate a block of memory for the publications to be */
/* loaded into by MQGET. We know the maximum size of a */
/* publication published by amqsgam so we can allocate a */
/* block large enough for any message we will receive. */
/***/
messageLength = DEFAULT_MESSAGE_SIZE;
pMessageBlock = (PMQBYTE)malloc(DEFAULT_MESSAGE_SIZE);

gmo.setOptions(MQGMO_WAIT + MQGMO_CONVERT);
gmo.setWaitInterval(MAX_WAIT_TIME);
gmo.setMatchOptions(MQMO_MATCH_CORREL_ID);
msg.useEmptyBuffer((char *) pMessageBlock,messageLength);
msg.setCorrelationId(EventCorrelId);

while (true) {

subscriberQueue.get(msg,gmo);

if(msg.formatIs(MQFMT_RF_HEADER)) {
/***/
/* Split the message data into the three important */
/* areas, the MQRFH header, the NameValueString that */
/* follows it and any user data following that. */
/***/
pMQRFHeader = (PMQRFH)pMessageBlock;
pNameValueString = (PMQCHAR)(pMessageBlock

 + MQRFH_STRUC_LENGTH_FIXED);
nameValueStringLength = pMQRFHeader->StrucLength

 - MQRFH_STRUC_LENGTH_FIXED;
pUserData = pMessageBlock + pMQRFHeader->StrucLength;
*(pMessageBlock + msg.dataLength()) = 0;
printf("The publication received is: %s\n",pUserData);

}
}

}
}
return (0);

}

In this chapter we’ve seen how using C++ differs from using the basic MQI and
how it can be used by applications programmers to build applications. In the next
chapter we discuss the use of the MQSeries automation classes for ActiveX.
 Chapter 5. Programming with C++ 179

180 MQSeries Programming Patterns

Chapter 6. Programming with ActiveX

This chapter is an overview of the MQSeries Automation Classes for ActiveX,
what they are and how they can be used to work with MQSeries queue manager
objects. Please refer to Using the Component Object Model Interface,
SC34-5387 for more detailed information.

6

© Copyright IBM Corp. 2002. All rights reserved. 181

6.1 Overview
MQSeries Automation Classes for ActiveX is another API set that allows the
programmer to work with queue manager objects. The MQSeries Automation
Classes for ActiveX components provide classes that are intended to be used by
designers and programmers who want to develop MQSeries applications that are
able to run on the Windows platform. The classes can then be easily integrated
into any application, because the MQSeries objects that are needed can be
coded using the native syntax of the implementation language. The overall
design of the application will be the same as for any MQSeries application.

It is important to mention a couple of concepts that are related to ActiveX.
ActiveX components are based on the Component Object Model, also known as
COM, which is an object-based programming model defined by Microsoft. This
model specifies how software components can be provided in a way that allows
them to locate and communicate with each other regardless of the computer
language in use or their physical location.

COM is the underlying architecture that forms the foundation for higher-level
software services, such as those provided by OLE. COM makes it easy to
develop powerful component-based applications. From its original application on
a single machine, COM has expanded to allow access to components from other
systems. This new model is known as Distributed COM or simply DCOM.

DCOM makes it possible to create networked applications built from
components. It extends COM to support communication among different
computers - on a local network, a wide area network, or even the Internet. With
DCOM, the application can be distributed at locations that make the most sense
to the customers and to the application.

COM+ is another extension of COM. It provides a runtime environment and
services that are used from any programming language or tool, and enables
extensive interoperability between components regardless of how there are
implemented. COM+ provides a simple, powerful model for building software
systems from interacting objects. All communication with an object must occur
through interfaces, and all communications must look like simple method calls -
even if the destination object is located in another process or on another
machine.

When designing an ActiveX application that uses MQSeries Automation Classes
for ActiveX, the most important item of information is the message that is sent or
received from the remote MQSeries system. For an MQSeries Automation
Classes script to work, both the sending side and the receiving application must
know the message structure. Also, when considering how to structure the
182 MQSeries Programming Patterns

implementation of an application that is being designed, keep in mind that the
MQSeries Automation Classes for ActiveX scripts run on the same machine as
the one on which either the MQSeries queue manager or the MQSeries client is
installed.

MQSeries Automation Classes for ActiveX key features are:

� Gives access to all the functions and features of the MQSeries API. This
allows full interconnectivity to the other non-Windows MQSeries platforms.

� Complies with the ActiveX conventions.

� Complies with the MQSeries object model.

� It gives the ActiveX application that is using them the ability to run
transactions and access data on any of enterprise systems that can be
accessed through MQSeries.

MQSeries Automation Classes for ActiveX implement a free-threading model
where objects can be used between threads. While the classes allow the use of
MQQueue and MQQueueManager objects, MQSeries does not currently permit
the sharing of handles between different threads.

Even though there are some advantages to using these classes, there are also
some limitations. Just to mention a few of them:

� If the application is going to be accessed using a Web browser, the browser
must support ActiveX controls (for example Microsoft Internet Explorer 3 or
later). If MQSeries is used to send data outside the machine on which it is
executed, a script can take advantage of this and cause security problems.

� The Automation Classes constants are not available to VBScript and
JavaScript programs, so the programmer will have to hard code them (these
constants can be found in the cmqc.h header file provided with MQSeries
products).

6.2 Platforms and languages
MQSeries Automation Classes for ActiveX can only be used on a 32-bit ActiveX
scripting client. Therefore, the only platforms where the classes are available
are:

� Windows 98/95
� Windows NT
� Windows 2000
 Chapter 6. Programming with ActiveX 183

An application that uses the MQSeries Automation Classes for ActiveX can be
written using a language that supports the creation and use of COM objects; for
example, Visual Basic, Java and other ActiveX scripting clients. The classes can
be easily integrated into the application because the MQSeries objects can be
coded using the native syntax of the implementation language.

To run the ActiveX components in an MQSeries server environment, you must
have Windows NT 4.0 (Service Pack 6 and Option Pack 4 if MTS is going to be
used as the transaction coordinator) or Windows 2000 and MQSeries version 5.1
or later.

6.3 Libraries
If an application is using MQSeries Automation Classes for ActiveX, it requires
the MQAX200.dll link library. This library can be found on MQSeries Base
Directory\bin. When writing applications, this library needs to be included in the
program. In Visual Basic, this can be achieved by adding the mqax200.dll to the
program references. For more information, please refer to the Visual Basic
product documentation.

6.4 Architectural model
MQSeries Automation Classes for ActiveX provide the following objects:

� MQSession: This is the main class for MQSeries Automation Classes for
ActiveX. It contains the status of the last action performed on any of the other
classes. There is only one MQSession object per ActiveX process. An
attempt to create a second object of this type creates a second reference to
the original object.

� MQQueueManager: This class provides access to the queue manager.
Calling the methods and properties of this object results in calls being made
across the MQI. When an object of this class is destroyed, it is automatically
disconnected from its queue manager. Some of the properties that can be
accessed through this call are alternate user ID, completion code, connection
status, and reason code. Must of these properties can be accessed only if the
object is connected to the queue.

� MQQueue: This class provides access to the queues and its properties, such
as current depth, depth high limit, etc.

� MQMessage: This class represents an MQSeries message. This class not
only includes properties to access the message descriptor, but it also
provides a buffer to hold the message data. It includes write methods to copy
data from an ActiveX application to an MQMessage object, and provides read
184 MQSeries Programming Patterns

methods to copy data from an MQMessage object to an ActiveX application.
This class manages the allocation and deallocation of memory for the buffer
automatically. The application does not have to declare the size of the buffer
when an MQMessage object is created, because the buffer grows to
accommodate data written to it.

� MQPutMessageOptions: This class encloses all the different options that
control the action of putting a message.

� MQGetMEssageOptions: This class encloses all the different options that
control the action of getting a message.

� MQDistributionList: This class encloses a collection of queues - local, remote,
or alias for output.

� MQDistributionListItem: This class encloses the MQOR, MQRR and MQPMR
structures and associates them with an owning distribution list.

6.5 Programming with MQSeries automation classes for
ActiveX

In the following section we see how the MQSeries Automation Classes for
ActiveX can be used to connect and manipulate queue manager objects. The
examples shown in this section are written in Visual Basic. Please refer to the
MQSeries book Using the Component Object Model Interface, SC34-5387, for
more detailed information.

6.5.1 Connecting to the queue manager
MQSeries Automation Classes for ActiveX follow the same structure as AMI. You
first have to create a session object in order to connect to the queue manager. To
create an instance of the MQSession class, we use the New keyword as follows:

Once the session object is created, a connection to the queue manager must be
established. This is achieved by using the AccessQueueManager() method of
the MQSession class. This method is actually going to connect to the queue
manager, open the queue manager, and set the initial property values.

Set SessionObject = New MQSession
 Chapter 6. Programming with ActiveX 185

The only parameter that this method expects is the queue manager name. If the
default queue manager is going to be accessed, then use ““ instead of the queue
manager name. The connection can be established by either using an MQSeries
client or connecting directly to an MQSeries server. If the connection object fails,
an error event is raised, the object’s reason code and completion code are set
and the MQSession object’s reason code and completion code are set.

Example 6-1 shows how to connect to the default queue manager.

Example 6-1 Connecting to default Queue Manager

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object

Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("")

Another way that can be used to connect to the queue manager is using the
Connect() method of the MQQueueManager class. Before calling this method,
the queue manager name has to be set. This is achieved by using the Name
property of the MQQueueManager class.

Example 6-2 shows how these calls are used to connect to a queue manager
called SAMPLE.QMGR1.

Example 6-2 Connect to Queue Manager

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object

Set MQSess = New MQSession
Set QMgr = New MQQueueManager
QMgr.Name=“SAMPLE.QMGR1”
QMgr.Connect

6.5.2 Opening MQSeries objects
Once we have successfully established the connection to the queue manager,
we can then open the MQSeries objects. These objects can be:

� Queues - remote, local, dynamic.
� Distribution lists
� Messages

Set QueueManagerObject =
SessionObject.AccessQueueManager(QmgrName as string)
186 MQSeries Programming Patterns

To open a queue, we use the AccessQueue() method of the
MQQueueManager() class:

QueueName is the name of the queue. This queue must be created before
attempting to connect to the queue manager. The OpenOption parameter is used
to specify the options that control the action of opening the queue. The open
options that are most commonly used are:

� MQOO_INPUT_SHARED: Used when the application needs to get messages
from a queue. It opens the queue in a shared access mode, so multiple
applications can retrieve messages from the queue simultaneously. This
option can only be used for local, alias, and model queues.

� MQOO_INPUT_EXCLUSIVE: Used when the application needs to get
messages from a queue. It opens a queue in exclusive mode. This option is
valid only for local, alias, and model queues.

� MQOO_OUTPUT: This option should be used if the application is going to put
messages in the queue. It is valid for all types of queues, including remote
queues and distribution lists.

For more information on the MQOPEN - Options parameter, refer to the
MQSeries Application Programming Reference.

The QueueManagerName is also used to specify the name of the queue
manager that owns the queue. This parameter is normally omitted since we
already created an MQQueueManager object referencing a queue manager. If
QueueName is a model queue, DynamicQueueName will be used to assign a
name to the dynamic queue that is going to be created.

Example 6-3 shows how to open a queue called PTP.QUEUE.LOCAL, which is
defined in the default queue manager.

Example 6-3 Open queue

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object
Dim ITSOQueue As MQQueue '* input queue object

Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("")
Set ITSOQueue = QMgr.AccessQueue(“PTP.QUEUE.LOCAL”,MQOO_OUTPUT)
‘ If PTP.QUEUE.LOCAL needs to be opened to get and receive messages, the
‘ call will look like this:

Set QueueObject = QueueManagerObject.AccessQueue(QueueName as
string, OpenOption as Long, QueueManagerName as string,
DynamicQueueName as string, AlternateUserId as string)
 Chapter 6. Programming with ActiveX 187

‘ Set ITSOQueue = QMgr.AccessQueue(“PTP.QUEUE.LOCAL”, _
‘ MQOO_OUTPUT + MQOO_INPUT_SHARED)

When it is necessary to send a message to multiple destinations, the
MQDistributionList object can be used. Similar to the MQQueue object, we need
to create an object of this type. This can be achieved by using the New keyword
as follows:

After creating a reference to the MQDistributionList object, we need to specify
the MQQueueManager object that has a reference to the queue manager where
the distribution lists are defined. This is achieved by using the
ConnectionReference property of the MQDistributionList object.

Once the reference to the queue manager is specified, the last thing that needs
to be done is adding queues to the distribution list. Each queue must be
associated with an MQDistributionListItem object. This can be done with the
AddDistributionListItem() method of the MQDistributionList class.

The QueueName is the name of the queue that needs to be part of the
distribution list, and QueueMgrName is the queue manager that owns the queue.

Example 6-4 shows how to send a message to two queues, PTP.QUEUE.LOCAL
and PTP.QUEUE2.LOCAL, which are defined in the queue manager
SAMPLE.QMGR1:

Example 6-4 Send a message

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object
Dim DistListItem1 As MQDistributionListItem
Dim DistListItem2 As MQDistributionListItem

Note: Do not set the QueueManagerName, or set it to ““ if the queue to be
opened is local. If it is set to the name of the remote queue manager that owns
the queue, an attempt is made to open a local definition of the remote queue.

Set DistributionListObject = New MQDistributionList

 DistributionListObject.ConnectionReference = QueueManagerObject

Set DistributionListItemObject =
DistributionListObject.AddDistributionListItem(QueueName as string,
QueueMgrName as string)
188 MQSeries Programming Patterns

Dim SampleMsg As MQMessage

Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("SAMPLE.QMGR1")
Set DistList = New MQDistributionList

DistList.ConnectionReference = QMgr

Set DistListItem1 = DistList.AddDistributionListItem(“PTP.QUEUE.LOCAL”)
Set DistListItem2 = DistList.AddDistributionListItem(“PTP.QUEUE2.LOCAL”)

Set SampleMsg = MQSess.AccessMessage()
SampleMsg.MessageData = “Sample Message”
DistList.OpenOptions = MQOO_OUTPUT
DistList.Open
DistList.Put SampleMsg

End Sub

Another object that needs to be created before sending or receiving messages is
the message object. As we mentioned before, the message object class contains
the message data and properties to access the message descriptor. This type of
object can be created using the AccessMessage() of the MQSession class:

The message data is assigned by the MessageData property. For example, if
you need to send the message “Sample Message”, this string will have to be
referenced to the message object. This is shown in Example 6-5.

Example 6-5 Assignment

MessageObject.Message = “Sample Message”

Binary data can be passed to an MQSeries message simply by setting the
CharacterSet property to the coded character set identifier of the queue manager
(MQCCSI_Q_MGR), and passing it a string.

6.5.3 Basic operations
In 6.5.2, “Opening MQSeries objects” on page 186, we saw how to create and
open the different queue manager objects. Now that the objects are created, we
can proceed with the basic operations that can be performed against the objects.
The basic operations include getting messages and sending messages.

Set MessageObject = SessionObject.AccessMessage()
 Chapter 6. Programming with ActiveX 189

Sending messages
Before sending a message, the queue will have to be opened with the
MQOO_OUTPUT option. In order to send a message, the Get() method of the
MQQueue object will have to be used.

MessageObject is the object that represents the message that is going to be
sent. Therefore, an object of this type will have to be created prior to this call.
Additionally, we can specify the PutMsgOptions object, which contains options to
control the put operation. If the PutMsgOptions object is not specified, the default
PMOs are used. If this option is going to be used, then an
MQPutMessageOptions object should be created using the
AccessPutMessageOptions() method of the MQSession class.

Example 6-6 shows how to put a message on a queue called
PTP.QUEUE.LOCAL with the PMO option MQPMO_NO_SYNCPOINT (put
messages without syncpoint control).

Example 6-6 Put message

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object
Dim ITSOQueue As MQQueue '* input queue object
Dim PutOptions As MQPutMessageOptions '* put message options
Dim SampleMsg As MQMessage '* message object for put

Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("")
Set SampleQueue = QMgr.AccessQueue(“PTP.QUEUE.LOCAL”,MQOO_OUTPUT)
Set SampleMsg = MQSess.AccessMessage()
Set PutOptions = MQSess.AccessPutMessageOptions()

SampleMsg.MessageData = “Sample Message”
PutOptions.Options = MQPMO_NO_SYNCPOINT
SampleQueue.put SampleMsg PutOptions

Remember that the MQPutMessageOptions object encapsulates the various
options that control the action of putting a message onto an MQSeries queue.

QueueObject.Put(MessageObject, PutMsgOptionsObject)
190 MQSeries Programming Patterns

To send multiple messages simultaneously, the put() method of the
MQDistributionListObject class is used. Just like sending a message to a single
queue, before we begin sending multiple messages we need to open the
distribution list with the MQOO_OUTPUT option using the OpenOptions property
of the MQDistributionList class. Then the open() method of the
MQDistributionList class is used to open the objects defined in the distribution
list.

Example 6-7 shows how to send a message to two queues, PTP.QUEUE.LOCAL
and PTP.QUEUE2.LOCAL, that are defined in the queue manager
SAMPLE.QMGR1.

Example 6-7 Send message

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object
Dim DistListItem1 As MQDistributionListItem
Dim DistListItem2 As MQDistributionListItem
Dim SampleMsg As MQMessage

Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("SAMPLE.QMGR1")
Set DistList = New MQDistributionList

DistList.ConnectionReference = QMgr

Set DistListItem1 = DistList.AddDistributionListItem(“PTP.QUEUE.LOCAL”)
Set DistListItem2 = DistList.AddDistributionListItem(“PTP.QUEUE2.LOCAL”)

Set SampleMsg = MQSess.AccessMessage()
SampleMsg.MessageData = “Sample Message”
DistList.OpenOptions = MQOO_OUTPUT
DistList.Open
DistList.Put SampleMsg

Receiving messages
To receive or get a message, we use the get() method of the MQQueue class.
Remember that before a message can be retrieved, the queue must be opened
with either MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED.
 Chapter 6. Programming with ActiveX 191

MessageObject is the object that represents the message that is going to be
retrieved. Therefore an object of this type will have to be created prior to this call.
Additionally, we can specify the GetMsgOptionsObject, which contains options to
control the get operation. However if it is not specified, the default GMOs are
used. If this option is going to be used, then an MQGetMessageOptions object
should be created using the AccessGetMessageOptions() method of the
MQSession class.

There are two ways of receiving a message from MQSeries:

� Polling by issuing a get() followed by a wait, using the Visual Basic Timer
function.

� Issuing a get() with the Wait option. Specify the wait duration by setting the
WaitInterval property. This is recommended when the software running at the
time is running single-threaded, while the system is multi-threaded. This
prevents your system from locking up indefinitely.

When an MQSeries application is the originator of a message and MQSeries
generates the AccountToken, CorrelationId, GroupId and MessageId, it is
recommended that you use the AccountingTokenHex, CorrelationIdHex,
GroupIdHex and MessageIdHex properties if you want to look at their value or
manipulate them in any way, including passing them back in a message to
MQSeries. The reason for this is that the MQSeries generated values are strings
of bytes that have any value from 0 through 255 inclusive. They are not strings of
printable characters.

If this method succeeds, then the MQMD and Message Data portions of the
MQMessage object are completely replaced with the MQMD and Message Data
from the incoming message. Otherwise, the MQMessage object doesn’t change.

If the contents of the message buffer are undefined, the total message length is
set to the full length of the message that would have been retrieved. If the
message length parameter is not specified, the length of the message buffer is
automatically adjusted to at least the size of the incoming message.

Example 6-8 shows how to get a message from a queue called
PTP.QUEUE.LOCAL and then display the message in a text box called
txtMessageData.

Example 6-8 Get message

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object
Dim ITSOQueue As MQQueue '* input queue object

QueueObject.Get(MessageObject, GetMsgOptionsObject, MsgLength)
192 MQSeries Programming Patterns

Dim GetOptions As MQGetMessageOptions '* get message options
Dim SampleMsg As MQMessage '* message object for put

Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("")
Set SampleQueue = QMgr.AccessQueue(“PTP.QUEUE.LOCAL”,MQOO_INPUT_SHARED)
Set SampleMsg = MQSess.AccessMessage()
Set GetOptions = MQSess.AccessGetMessageOptions()

GetOptions.Options = GetOptions.Options Or MQGMO_NO_SYNCPOINT
SampleQueue.get SampleMsg GetOptions
txtMessageData.text = SampleMsg.MessageData

6.5.4 Closing objects
Once the messages are sent or received and the data has been processed, the
objects can be closed. This is done by using the close() method of the object that
needs to be closed (queue manager, queue or distribution list).

If a dynamic queue is going to be closed and we are the ones who created it,
then either one of the following options should be specified in the close options
(MQCO) using the CloseOptions property of the MQQueue class:

� MQCO_DELETE: Deletes the queue.
� MQCO_DELETE_PURGE: Deletes the queue, but only after purging all the

messages.

6.5.5 Closing the connection
To disconnect from the queue manager, the Disconnect() method of the
MQQueueManager class can be used:

All queue objects associated with the MQQueueManager object are made
unusable and cannot be re-opened. Any uncommitted changes (message puts
and gets) are committed.

QueueManagerObject.Close

QueueObject.Close

DistributionListObject.Close

QueueManagerObject.Disconnect
 Chapter 6. Programming with ActiveX 193

6.6 Transaction management
The API calls used to control the transaction depend on the type of transaction
that is being used. There are three different scenarios:

� When the only resources are the MQSeries messages (local unit of work):

In this scenario, the transaction is started by the first message sent or
received under syncpoint control, as specified using the
MQPMO_SYNCPOINT or MQGMO_SYNCPOINT option of the
MQPutMessageOptions or MQGetMessageOptions objects. Multiple
messages can be included in the same unit of work. The transaction can be
committed by using the Commit() method or backed out by using the
Backout() method of the MQQueueManager object. Example 6-9 shows how
to put a message under syncpoint control.

Example 6-9 Put message under syncpoint

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object
Dim ITSOQueue As MQQueue '* input queue object
Dim PutOptions As MQPutMessageOptions '* put message options
Dim SampleMsg As MQMessage '* message object for put

Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("")
Set SampleQueue = QMgr.AccessQueue(“PTP.QUEUE.LOCAL”,MQOO_OUTPUT)
Set SampleMsg = MQSess.AccessMessage()
Set PutOptions = MQSess.AccessPutMessageOptions()

SampleMsg.MessageData = “Sample Message”
PutOptions.Options = MQPMO_SYNCPOINT
SampleQueue.put SampleMsg PutOptions

‘Perform any actions before the message is put on the queue

QMGr.Commit

Example 6-10 shows how to get a message under syncpoint control.

Example 6-10 Get message under syncpoint

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object
Dim ITSOQueue As MQQueue '* input queue object
Dim GetOptions As MQGetMessageOptions '* get message options
Dim SampleMsg As MQMessage '* message object for put

Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("")
194 MQSeries Programming Patterns

Set SampleQueue = QMgr.AccessQueue(“PTP.QUEUE.LOCAL”,MQOO_INPUT_SHARED)
Set SampleMsg = MQSess.AccessMessage()
Set GetOptions = MQSess.AccessGetMessageOptions()

GetOptions.Options = GetOptions.Options Or MQGMO_SYNCPOINT
SampleQueue.get SampleMsg GetOptions
‘Perform any validations before the message is physically removed
‘from the queue.
....
QMgr.Commit

txtMessageData.text = SampleMsg.MessageData
...

‘If an error ocurred during the validation, don’t retreive the message and
‘display the error message
If MQSess.CompletionCode <> MQCC_OK Then
QMgr.Backout
ErrMsg = Err.Description
StrPos = InStr(ErrMsg, " ") ' * search for first blank
If StrPos > 0 Then
Print Left(ErrMsg, StrPos)
Else
Print Error(Err) '* print complete error object
End If
Print ""
Print "MQSeries Completion Code = " & MQSess.CompletionCode
Print "MQSeries Reason Code = " & MQSess.ReasonCode
Print "(" & MQSess.ReasonName & ")"
End If

� When MQSeries acts as an XA transaction coordinator (global unit of work).

The transaction must be started explicitly using the begin() method of the
MQQueueManager class before the first recoverable resource (such as a
relational database) is changed. The unit of work can then be committed by
using the commit() method or backed out by using the backout() method of
the MQQueueManager object.

Example 6-11 shows how the MQSeries Automation Classes for ActiveX can
be used when MQSeries is an XA transaction coordinator.

Example 6-11 Classes

Dim MQSess As MQSession '* session object
Dim QMgr As MQQueueManager '* queue manager object
Dim ITSOQueue As MQQueue '* input queue object
Dim PutOptions As MQPutMessageOptions '* put message options
Dim SampleMsg As MQMessage '* message object for put
 Chapter 6. Programming with ActiveX 195

‘Connect to the database
...
Set MQSess = New MQSession
Set QMgr = MQSess.AccessQueueManager("")
Set SampleQueue = QMgr.AccessQueue(“PTP.QUEUE.LOCAL”,MQOO_OUTPUT)
Set SampleMsg = MQSess.AccessMessage()
Set PutOptions = MQSess.AccessPutMessageOptions()

QMgr.Begin

SampleMsg.MessageData = “Sample Message”
PutOptions.Options = MQPMO_SYNCPOINT
SampleQueue.put SampleMsg PutOptions

‘Perform any validations and update the table
...

QMGr.Commit

‘If an error ocurred during the validation, don’t put the message on the
queue ‘and display the error message
If MQSess.CompletionCode <> MQCC_OK Then
QMgr.Backout
ErrMsg = Err.Description
StrPos = InStr(ErrMsg, " ") ' * search for first blank
If StrPos > 0 Then
Print Left(ErrMsg, StrPos)
Else
Print Error(Err) '* print complete error object
End If
Print ""
Print "MQSeries Completion Code = " & MQSess.CompletionCode
Print "MQSeries Reason Code = " & MQSess.ReasonCode
Print "(" & MQSess.ReasonName & ")"
End If

� When an external transaction coordinator, such as Microsoft Transaction
Server, is used.

In this case, the transaction is controlled using the API calls of an external
transaction coordinator. Briefly put, Microsoft Transaction Server is essentially
a management tool for COM/ActiveX components on local and remote
computers.
196 MQSeries Programming Patterns

Microsoft Transaction Server is typically used with front-end code that is a
COM client to the objects held within Microsoft Transaction Server, and
back-end services such as databases. The front-end code may be a fat
stand-alone program, or an Active Server Page hosted by the Internet
Information Server. The front-end code may reside on the same machine as
Microsoft Transaction Server and its business objects with connection via
COM.

Alternatively the front-end code may reside on a different machine, with
connection via DCOM. Different clients may be used to access the same
Microsoft Transaction Server business object in different situations. It should
not make any difference to the operation of Microsoft Transaction Server and
its business object which client is used or how the client connects to Microsoft
Transaction Server. The client objects may be written in any language and
environment that support the coding of COM client. The most common are
Visual Basic for a fat client and VBScript or JavaScript for a thin client. The
business objects may be written in any language that supports the coding of
COM servers. The most common are Visual Basic, C++, and Java
(Microsoft’s).

Microsoft Transaction Server is designed to help users run business logic
applications in a typical middle-tier server. It divides work up into activities that
are typically short, independent chunks of business logic. Microsoft
Transaction Server introduced many features to make writing scalable and
distributed applications easier. In Windows 2000, a new product called COM+
was introduced. This product is an evolution of Microsoft Transaction Server.

6.7 Grouping
MQSeries Automation Classes for ActiveX allow a sequence of related
messages to be included in, and sent as, a message group. Group context
information is sent with each message to allow the message sequence to be
preserved and made available to a receiving application. The group identification
is defined in the message descriptor structure, which can be accessed through
the MQMessage class.

Every message in the group must have the MQMF_MSG_IN_GROUP option
except for the last one, which needs to have the
MQMF_LAST_MSG_IN_GROUP option. The order of the messages that are
part of the group is stored in the MsgSeqNumber field of the MQMD structure,
which is generated automatically by the queue manager.
 Chapter 6. Programming with ActiveX 197

Additionally, the queue manager can control whether or not a message group
has been received completely. If only completed message groups need to be
displayed, the MQGMO_ALL_MSGS_AVAILABLE option can be set in the get
message options structure.

6.8 Exploring the patterns
In this section we give examples of how the MQSeries Automation Classes for
ActiveX can be used to build applications using the different messaging patterns.

6.8.1 Send-and-forget
The sample program that we discuss in this section follows the logical flow
below:

� Create an MQSession object.

� From the MQSession object, create an MQQueueManager object, MQQueue
object, MQPutMessageOptions object, and MQMessage object.

� Open the MQQueue object.

� Populate the MQMessage with data using the MessageData property.

� Put the MQMessage on the MQQueue using the put method.

� Read and display all of the data in the MQMessage using the MessageData
property. Also, display the format and the MessageId using the Format and
MessageId properties.

� Close the MQQueue, MQQueueManager and MQSession objects.

The first thing that we need to do before even attempting to connect to a queue
manager is to add a reference to the MQSeries library MQAX200, which is
located on the MQSeries installation directory under the bin directory. Once the
reference to the MQSeries Automation Classes for ActiveX library is created, the
next step will be to define the objects that are needed for a send-and-forget
application.

Example 6-12 shows how to define the objects needed for this type of
application. It is recommended that the names of the objects be descriptive, so
that it is easier to remember what they are used for.

Example 6-12 Define objects

Dim MQ_QManager As MQQueueManager '* queue manager object
Dim MQ_Queue As MQQueue '* queue object
Dim MQ_Session As MQSession '* session object
Dim MQ_Message As MQMessage '* message object for put
198 MQSeries Programming Patterns

Dim PutOptions As MQPutMessageOptions '* get message options
Dim MsgSr As String '* put message data string

In Example 6-13, the MQ_Session object is created and the default queue
manager is accessed. Also the PTP.QUEUE.LOCAL queue is opened with the
MQOO_INPUT option, which means that messages can be put on the queue.

Example 6-13 Create object

Set MQ_Session = New MQSession
Set MQ_QManager = MQ_Session.AccessQueueManager("")
Set MQ_Queue = MQ_QManager.AccessQueue("PTP.QUEUE.LOCAL", MQOO_OUTPUT)

Example 6-14 shows how to access a new MQMessage object, add some data,
create an MQPutMessageOptions object, and finally put the message on the
PTP.QUEUE.LOCAL queue that was opened in Example 6-13.

Example 6-14 Access object

Set MQ_Message = MQ_Session.AccessMessage()
MQ_Message.MessageData = "Simple Send And Forget Application Using MQAX "
Set PutOptions = MQ_Session.AccessPutMessageOptions()
MQ_Queue.Put MQ_Message

Finally, if no more messages are going to be sent, the queue manager objects
have to be closed. In Example 6-15 the PTP.QUEUE.LOCAL queue is going to
be closed using the close method of the MQQueue class. After closing, we must
disconnect from the local queue manager that was opened in Example 6-13.

Example 6-15 Close objects

MQ_Queue.Close
MQ_QManager.Disconnect

6.8.2 Request/reply
The sample program that we are going to discuss in this section follows the
logical flow below:

� Create an MQSession.

� From the MQSession, create an MQQueueManager, two MQQueue objects
(one for the sending queue and one for the reply to queue), an
MQPutMessageOptions object, an MQGetMessageOptions object, and two
MQMessage objects (one for the sending message and one for the reply
message).

� Open the MQQueue.
 Chapter 6. Programming with ActiveX 199

� Put a message on the queue and wait for a reply on the reply-to queue.

� Get the MQMessage from the MQQueue object using the get method.

� Populate the MQMessage with data that was retrieved using the
MessageData property.

� Read and display all of the data in the MQMessage using the MessageData
property.

� Close the MQQueue, MQQueueManager and MQSession objects.

The first thing that we need to do before even attempting to connect to a queue
manager is to add a reference to the MQSeries library MQAX200, which as we
mentioned in 6.3, “Libraries” on page 184 is located in the MQSeries installation
directory under the \bin folder. Once the reference to the MQSeries Automation
Classes for ActiveX library is created, the next step will be to define the objects
that are needed for the request/reply application.

Example 6-16 shows how to define the objects needed for this type of
application. It is recommended that the names of the objects be descriptive, so
that it is easier to remember what they are used for.

Example 6-16 Define objects

Dim MQ_QManager As MQQueueManager '* queue manager object
Dim MQ_SendQueue As MQQueue '* queue object for sending
Dim MQ_ReplyQueue As MQQueue '* queue object for replies
Dim MQ_Session As MQSession '* session object
Dim MQ_PutOptions As MQPutMessageOptions '* put message options
Dim MQ_GetOptions As MQGetMessageOptions '* get message options
Dim MQ_PutMsg As MQMessage '* message object for put
Dim MQ_GetMsg As MQMessage '* message object for get

In Example 6-17, the MQ_Session object is created and the default queue
manager is accessed. Also the PTP.QUEUE.LOCAL queue is opened with the
MQOO_INPUT option and the PTP.REPLY.QUEUE.LOCAL is opened with the
MQOO_INPUT_SHARED.

Example 6-17 Create session object

Set MQ_Session = New MQSession
Set MQ_QManager = MQ_Session.AccessQueueManager("")
Set MQ_SendQueue = MQ_QManager.AccessQueue("PTP.QUEUE.LOCAL", MQOO_OUTPUT)
Set MQ_ReplyQueue = MQ_QManager.AccessQueue("PTP..REPLY.QUEUE.LOCAL",
MQOO_INPUT_SHARED)

Example 6-18 shows how to access a new MQMessage object, add some data,
then create an MQPutMessageOptions object and finally put the message on the
PTP.QUEUE.LOCAL queue that was opened in Example 6-13.
200 MQSeries Programming Patterns

Example 6-18 Access object

Set MQ_Message = MQ_Session.AccessMessage()
MQ_Message.MessageData = "Simple Request and Reply Application Using MQAX "
Set MQ_PutOptions = MQ_Session.AccessPutMessageOptions()
MQ_Queue.Put MQ_Message

Once the message is sent, a reply is expected on the
PTP.REPLY.QUEUE.LOCAL queue. We use the message ID to retrieve the reply
from the queue. This is shown in Example 6-19.

Example 6-19 Retrieve reply

MQ_Message.MessageIdHex = MQMessageId
Set MQ_GetOptions = MQ_Session.AccessGetMessageOptions()
MQ_GetOptions.Options = GetOptions.Options Or MQGMO_NO_SYNCPOINT
MQ_Queue.Get MQ_Message
Message = MQ_Message.MessageData

Finally if no more messages are being sent, the queue manager objects have to
be closed. In Example 6-20 the PTP.QUEUE.LOCAL queue is going to be closed
using the close() method of the MQQueue class. After closing, disconnect from
the local queue manager that was opened in Example 6-17.

Example 6-20 Close objects

MQ_Queue.Close
MQ_QManager.Disconnect
 Chapter 6. Programming with ActiveX 201

202 MQSeries Programming Patterns

Chapter 7. Programming with Java

This chapter covers programming using the MQSeries classes for Java. It
provides the information required by programmers who want to write Java
applications or applets that interface with MQSeries queues.

7

© Copyright IBM Corp. 2002. All rights reserved. 203

7.1 Overview
The MQSeries classes for Java allow a program written in the Java programming
language to access MQSeries objects. The MQSeries Java API provides
methods to put messages onto, and get messages from, MQSeries queues.

7.2 Platforms
The MQSeries classes for Java product is available for:

� AIX
� iSeries and OS/400
� HP-UX
� Linux
� Sun Solaris
� z/OS and OS/390 V2R9 or higher
� Windows platforms

It contains:

� MQSeries classes for Java (MQSeries base Java) Version 5.2.0
� MQSeries classes for Java Message Service (MQSeries JMS) Version 5.2

7.2.1 Obtaining the package
The MQSeries classes for Java are supplied as compressed files and are
available from the MQSeries Web site at:

http://www-4.ibm.com/software/ts/mqseries/txppacs/txpsumm.html

The files are supplied as part of SupportPac MA88.

MQSeries base Java is composed of the following Java .jar files:

com.ibm.mq.jar This code includes support for all the connection options.

com.ibm.mq.iiop.jar This code supports only the VisiBroker connection.

com.ibm.mqbind.jar This code supports only the bindings connection and is
not supplied or supported on all platforms.
204 MQSeries Programming Patterns

http://www-4.ibm.com/software/ts/mqseries/txppacs/txpsumm.html

For z/OS and OS/390, a separate SupportPac, MA1G, is also available . The
difference between MA1G and MA88 is that MA88 does not support CICS and
MA1G does.

7.2.2 Running the MQSeries classes for Java
In order to run the MQSeries classes for Java, the following software is required:

� MQSeries for the server platform you wish to use.

� Java Development Kit (JDK) for the server platform.

� Java Development Kit, or Java Runtime Environment (JRE), or Java-enabled
Web browser for client platforms.

� VisiBroker for Java (only if running on Windows with a VisiBroker connection).

� For z/OS and OS/390, OS/390 Version 2 Release 9 or higher, or z/OS, with
UNIX System Services.

� For OS/400, the AS/400 Developer Kit for Java (5769-JV1) and the Qshell
Interpreter, OS/400 (5769-SS1) Option 30.

Installation directories
A list of the installation directories is shown in Table 7-1.

Table 7-1 Installation directories

Platform Directory

AIX usr/mqm/java

z/OS and OS/390 install_dir/mqm/java

iSeries and OS/400 /QIBM/ProdData/mqm/java/

HP-UX and Sun Solaris opt/mqm/java/

Linux install_dir/mqm/java/

Windows 95, 98, 2000 and NT install_dir\

Note: install_dir is the directory in which the product is installed. On Linux, this
is likely to be /opt, and on z/OS and OS/390 it is likely to be /usr/lpp.
 Chapter 7. Programming with Java 205

Environment variables
A summary of the environment variables needed for each platform is provided in
Table 7-2.

Table 7-2 Environment variables

For actual installation instructions for a particular platform, see MQSeries Using
Java, SC34-5456. This book is particularly important if the software is not yet
installed and operational, because it contains very specific environmental
variable information.

Platform Sample Classpath

AIX CLASSPATH =
/usr/mqm/java/lib/com.ibm.mq.jar:
/usr/mqm/java/lib/connector.jar:
/usr/mqm/java/lib:
/usr/mqm/java/samples/base:

HP-UX and Sun Solaris CLASSPATH=
/opt/mqm/java/lib/com.ibm.mq.jar:
/opt/mqm/java/lib/connector.jar:
/opt/mqm/java/lib:
/opt/mqm/java/samples/base:

Windows 95, 98, 2000 and NT CLASSPATH=
install_dir\lib\com.ibm.mq.jar;
install_dir\lib\com.ibm.mq.iiop.jar;
install_dir\lib\connector.jar;
install_dir\lib\;
install_dir\samples\base\;

z/OS and OS/390 CLASSPATH=
install_dir/mqm/java/lib/com.ibm.mq.jar:
install_dir/mqm/java/lib/connector.jar:
install_dir/mqm/java/lib:
install_dir/mqm/java/samples/base:

iSeries and OS/400 CLASSPATH=
/QIBM/ProdData/mqm/java/lib/com.ibm.mq.jar:
/QIBM/ProdData/mqm/java/lib/connector.jar:
/QIBM/ProdData/mqm/java/lib:
/QIBM/ProdData/mqm/java/samples/base:

Linux CLASSPATH=
install_dir/mqm/java/lib/com.ibm.mq.jar:
install_dir/mqm/java/lib/connector.jar:
install_dir/mqm/java/lib:
install_dir/mqm/java/samples/base:
206 MQSeries Programming Patterns

7.3 Using the MQSeries classes for Java
An application program can interact with MQSeries objects such as MQSeries
queues upon establishing a connection to MQSeries queue manager. The queue
manager provides the messaging services for the MQSeries objects that it owns.

There are two connection modes that can be used to establish a connection with
the queue manager. The way you would program depends on the connection
mode you choose. We first look at the two connection modes, binding mode and
client connection mode.

7.3.1 Connection modes
The connection modes that can be used in MQSeries JMS are shown in
Figure 7-1.

Figure 7-1 Connection modes

Binding mode
In binding mode, also known as server connection, the communication to the
queue manager utilizes inter-process communications. One of the key factors
that should be kept in mind is that binding mode is available only to programs
running on the MQSeries server that hosts the queue manager. A program using
binding mode will not run from an MQSeries client machine. In other words, the
application is tied to the same machine the queue manager is on.

Binding mode is a fast and efficient way to interact with MQSeries. Certain
facilities, such as XA transaction co-ordination by queue manager, are available
only in binding mode.
 Chapter 7. Programming with Java 207

Client connection
Client connection uses a TCP/IP connection to the MQSeries Server and
enables communications with the queue manager. Programs using client
connections can run on an MQSeries client machine as well as on an MQSeries
server machine. Client connections use client channels on the queue manager to
communicate with the queue manager. The client connection does not support
XA transaction co-ordination by the queue manager. From an API perspective,
the MQBEGIN call (begin() method of the MQQueueManager class) is not
supported in client connection mode.

When using client connection, you would have to specify a few additional
environment properties to establish connection with the queue manager. These
are namely the host name, which is the name of the MQSeries server machine
that hosts the queue manager, and the channel name, which is the name of the
channel for client connection. Additionally, you can specify the port number on
which the MQSeries server listens. If the port number is not specified, the default
port number of 1414 would be used.

MQSeries classes for Java
In general, however, the MQSeries classes for Java consist of the following
classes and interfaces:

MQChannelDefinition This class is used to pass information concerning the
connection to the queue manager to the send,
receive and security exits. This class does not apply
when connecting directly to MQSeries in binding
mode.

MQChannelExit This class defines context information passed to the
send, receive, and security exits when they are
invoked. The exitResponse attribute of this class
should be set by the exit to indicate what action the
MQSeries Client for Java should take next.

MQDistributionList This class represents a set of open queues to which
messages can be sent using a single call to the put()
method. This class is instantiated by using the
MQDistributionList constructor or by using the
accessDistributionList() method for the
MQQueueManager class.

MQDistributionListItem This class represents a single item (single queue)
within a distribution list. This class inherits the
MQMessageTracker class.

MQEnvironment This class contains static member variables that
control the environment in which an
208 MQSeries Programming Patterns

MQQueueManager object (and its corresponding
connection to MQSeries) is constructed. Since the
values set in this class take effect when the
MQQueueManager constructor is called, the values
in the MQEnvironment class should be set before an
MQQueueManager instance is constructed.

MQException This class contains the definitions of the MQSeries
completion code and error code constants.
Constants beginning with MQCC_ are MQSeries
completion codes and constants beginning with
MQRC_ are MQSeries reason codes. An
MQException is thrown whenever an MQSeries error
occurs.

MQGetMessageOptions This class contains the options that control the
behavior of the MQQueue.get() method.

MQManagedObject This class is a superclass for the
MQQueueManager, MQQueue, and MQProcess
classes. It provides the ability to inquire and set the
attributes of these resources.

MQMessage This class represents the message descriptor and
the data for an MQSeries message.

MQMessageTracker This class is used to tailor message parameters for a
given destination in a distribution list. It is inherited by
MQDistributionListItem.

MQPoolServices This class can be used by implementations of
ConnectionManager that are intended for use as the
default ConnectionManager for MQSeries
connections.

MQPoolServicesEvent This class is used to generate an event whenever an
MQPoolToken is added to, or removed from, the set
of tokens that MQEnvironment controls. An
MQPoolServicesEvent is also generated when the
default ConnectionManager is changed.

MQPoolToken This class can be used to enable the default
connection pool.

MQProcess This class provides inquiry operations for MQSeries
processes.

MQPutMessageOptions This class contains the options that control the
behavior of the MQQueue.put() method.
 Chapter 7. Programming with Java 209

MQQueue This class provides inquiry, set, put, and get
operations for MQSeries queues. The inquire and set
capabilities are inherited from MQManagedObject.

MQQueueManager This class represents the queue manager for
MQSeries.

MQSimpleConnectionManager This class provides basic connection pooling
functionality.

Interfaces
The MQSeries classes for Java have the following interfaces:

MQReceiveExit This interface allows for examination and possible
alteration of the data received from the queue manager by
the MQSeries classes for Java. This interface does not
apply when connecting to MQSeries in binding mode.

MQSecurityExit This interface allows customizing of security flows that
occur when an attempt is made to connect to a queue
manager. This interface does not apply when connecting
directly to MQSeries in binding mode.

MQSendExit This interface allows for the examination and possible
alteration of the data sent to the queue manager by the
MQSeries Client for Java. This interface does not apply
when connecting directly to MQSeries in binding mode.

7.4 Working with MQSeries Java API
We explore the methodology of programming with MQSeries Java API in this
section.

7.4.1 Setting up the connections
In this section we examine the implementation of the binding and client
connection modes. Assuming that from a design perspective you have chosen to
implement either binding or client connection mode, we explain how we can
implement them.

Connection to the queue manager is obtained by the constructor calls of the
MQQueueManager class. At this time, the type of connection obtained is
determined by some static fields in the MQEnvironment class. The static field
settings that differentiate the connection modes are host, channel, userId, and
password. Of these MQEnvironment fields that are used for connecting to the
210 MQSeries Programming Patterns

queue manager, it is the host and channel field settings that mainly differ
between binding mode and client connection mode. In binding mode you do not
have to set a value for any of these fields except for the userId and password
fields. You can choose to set them in binding mode also.

� MQEnvironment.hostName

For client connections, set this to the name of the host that hosts the queue
manager. Since this host name is used for a TCP/IP connection to the
machine on which the queue manager is running, the value is not case
sensitive. For example:

MQEnvironment.host = “machinename.dmain.com” ;

� MQEnvironment.channel

This is the name of the channel for client connections. The value of this field
is case sensitive. Typically it is the name of the Server Connection Channel
under the queue manager. It is a bidirectional link that enables MQI calls and
responses between the client and the queue manager.

For client connections, set it to be the name of the server connection channel
under the queue manager to which the application is attempting to connect.
For example:

MQEnvironment.channel = “JAVA.CLIENT.CHNL”;

� MQEnvironment.port

The port number is an optional field. By default the client would attempt to
connect to the queue manager on the port number 1414 of the host. Port
number 1414 is the port number used by MQSeries listeners by default. If the
port number is different from the default, you can specify the port number
using the MQEnvironment.port field. For example:

MQEnvironment.port = nnnn;

� MQEnvironment.userId, MQEnvironment.password

The userId and password fields are blank by default. You can specify a user
ID and password by setting the values of the userId and password fields. For
example:

MQEnvironment.userId = “userXYZ” ;
MQEnvironment.password = “password” ;

� MQEnvironment.properties

This is a hash table of the key value pairs that define the MQSeries
environment. Unless you are using VisiBroker connections, set the value of
this field for both binding as well as client connection to:

MQC.TRANSPORT_PROPERTY, MQC.TRANSPORT_MQSERIES
 Chapter 7. Programming with Java 211

The variables in the MQEnvironment class control the behavior of the connection
call to the queue manager. The first step in setting up a connection to the queue
manager is to set the MQEnvironment fields depending on the type of connection
mode, as explained in the 7.4.1, “Setting up the connections” on page 210.

Connection to the queue manager is obtained through the constructor call of the
MQQueueManager class by creating a new instance of the MQQueueManager
class. The MQQueueManager class has overloaded constructors. Appropriate
constructors are invoked to establish the connection depending on the
parameters supplied while creating the new instance of the MQQueueManager
class. In the simplest case you can create the new instance of the
QueueManager class by supplying the queue manager name as a string. The
queue manager name is case sensitive. For example:

MQQueueManager qmgr = new MQQueueManager(“ITSOG.QMGR1”) ;

Here ITSOG.QMGR1 is the name of the Queue Manager.

The above approach is valid in both binding and client connection modes.

In the second approach you can create a new instance of the MQQueueManager
class by supplying the queue manager name string, and a hash table with key
value pairs for setting the Environment options. In this approach, the properties
supplied override the values set in the MQEnvironment class. This approach can
be used if you want to set the environment values on queue manager to queue
manager basis. For example:

MQQueueManager qmgr = new MQQueueManager(queueManagerName ,
propertiesHashTable)

The third approach involves creating a new instance of the MQQueueManager
class by supplying queue manager name string and queue manager open
options, which is an integer field. This approach can be used only with binding
mode. The options field lets you choose between fast or normal bindings. For
example:

MQQueueManager qmgr = new MQQueueMager(queueManagerName ,
MQC.MQCNO_FASTPATH_BINDING) ;

7.4.2 Interacting with queues
In order to perform any operations on the queue, first we should get a queue
handle or queue object by opening the queue. There are two ways to open the
queue. We can use the accessQueue method of the MQQueueManager object
or through the constructor call of the MQQueue class.
212 MQSeries Programming Patterns

The two different call are of the form:

MQQueue queue = qmgr.accessQueue(“qName’, openOption, “qMgrName” ,
“dynamicQname”, “alternateUserId”);

The second approach of using the constructor of the MQQueue class is much
the same, with an added queue manager parameter.

MQQueue queue = new MQQueue(qmgr, “qName’, openOption, “qMgrName” ,
“dynamicQname”, “alternateUserId”);

MQSeries will validate the openOption against the user authorization during the
process of opening the queue.

The object of the MQQueue class represents a queue. It has methods to
facilitate messaging (namely put, get, set, inquire) and properties that
correspond to the attributes of a queue.

7.4.3 Working with MQSeries messages
An object of the MQMessage class represents the message to be put on or got
from a queue. It encapsulate both the application data and the MQMD. It has
properties corresponding to the MQMD fields and methods to write or read
different application data of different data types to and from the message. Within
the application, the MQMessage represents a buffer. An application does not
have to declare the buffer size as it resizes itself to accommodate the data being
written to it. However, if the message size is more than the
MaximumMessageLength property of the queue, you wouldn’t be able to put the
message on to the queue.

To create a message, you create a new instance of the class MQMessage.
Application data is written to the message using the writeXXX methods for the
specific application data type. The format of data types such as numbers and
strings can be controlled by the MQMD properties characterSet and encoding.
The MQMD fields can be set before the message is put on the queue and can be
read the MQMD fields upon getting the message from the queue. When a
message is instantiated, the MQMD fields are set to their default values.

Applications control the way messages are put on the queue or got from the
queue by setting appropriate options with put or get operation. The way the
message is put on the queue is controlled by setting appropriate put message
option values. Similarly, the way messages are retrieved from the queue is
controlled by setting appropriate get message options.
 Chapter 7. Programming with Java 213

Put message options
The way messages are put on the queue is determined by the value of the
options field of the instance of the MQPutMessageOptions class. The value of
the options can be set using the MQPMO structure of MQSeries Constants
MQC. For example:

MQPutMessageOptions pmo = new MQPutMessageOption();

The instance of the MQPutMessageOptions class has the value for the options
property set to the default value. This may be sufficient in most of the simple
messaging scenarios. You can set any specific options using the MQPMO
structure from the MQSeries contestants interface MQC. For example:

pmo.options = pmo.options + MQC.MQPMO_NEW_MSG_ID

The example sets the value of the options field to instruct the queue manager to
generate a new message ID for the message and set it the MsgId field of the
MQMD.

Get message options
The way messages are retrieved from the queue is determined by the value of
the options field of the instance of the MQGetMessageOptions class. The value
of the options can be set using the MQOO structure of MQSeries Constants
MQC. For example:

MQGetMessageOptions gmo = new MQGetMessageOption();

The new instance of the MQGetMessageOptions class has the value of the
options property set to the default. You can set the appropriate get message
options using the MQPOO structure. For example:

gmo.options = gmo.options + MQC.MQGMO_NO_WAIT;

The above option specifies that the get message call is to return immediately if
there are no messages on the queue.

Sending messages
Messages are sent using the put(MQMessage message) or put(MQMessage
message, MQPutMessageOptions pmo) methods of the MQQueue class. The
put method call places the message on the MQSeries queue.

The put message options control the way the messages are placed on the
queue.
214 MQSeries Programming Patterns

Receiving messages
Messages are retrieved from the MQSeries queue using the get(MQMessage
message) or get(MQMessage, MQGetMessageOptions gmo), get(MQMessage,
MQGeMessageOptions gmo, int maxMessageSize) methods of the MQQueue
class.

All calls to MQSeries from a given MQQueueManager are synchronized.

When the MaxMessageSize is not specified, the length of the message buffer is
automatically adjusted to the message size of the incoming message. If you use
the MaxMessageSize with the get method call, the largest message this call will
be able to receive. If the message on the queue is larger than this size, one of
two things can occur:

1. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is set in the options
member variable of the MQGetMessageOptions object, the message is filled
with as much of the message data as will fit in the specified buffer size, and
an exception is thrown with completion code
MQException.MQCC_WARNING and reason code
MQException.MQRC_TRUNCATED_MSG_ACCEPTED.

2. If the MQC.MQGMO_ACCEPT_TRUNCATED_MSG flag is not set, the
message is left on the queue and an MQException is raised with completion
code MQException.MQCC_WARNING and reason code
MQException.MQRC_TRUNCATED_MSG_FAILED.

7.5 Application development
In this section, we explore the implementation of the send-and-forget,
request/reply and message grouping point-to-point messaging patterns.

7.5.1 Point-to-point pattern
In this section we illustrate the point-to-point pattern with simple programs that
implement this pattern.

Important: If you perform a get with wait, all other threads using the same
MQQueueManager are blocked from making further MQSeries calls until the
get completes. If you need multiple threads to access MQSeries
simultaneously, each thread must create its own MQQueueManager object.
 Chapter 7. Programming with Java 215

In the point-to-point pattern, applications act in pairs. A sending application that
we call as a sender puts messages on to an MQSeries application queue on the
sending side. On the destination system or receiving side, an application that we
call as a receiver retrieves messages from the MQSeries application queue. The
sender and receiver applications thus act in pairs to achieve the data movement
or messaging between the source and destination systems.

Figure 7-2 Point-to-point programming approach
216 MQSeries Programming Patterns

In the examples, client connection to the queue manager is used. The MQSeries
object used in the examples is a queue manager named ITSOG.QMGR1 on host
ITSOG. The channel used for client connection is JAVA.CLIENT.CHNL and the
port is the default port of 1414. The application queue used is SAMPLE.QUEUE.

Simple message sender application
Our first point-to-point client program creates a simple message and sends it to
an MQSeries queue. We also illustrate the receiver program that processes the
message sent by the sender.

The steps involved are:

� Import the MQSeries Java API package.
� Set up the environment properties for client connection.
� Connect to the queue manager.
� Set the options for opening the MQSeries queue.
� Open the application queue for sending messages.
� Set the options to put messages on to the application queue.
� Create a message buffer.
� Prepare the message with user data and any message descriptor fields.
� Put the message on the queue.

The following program PtpSender.java is the sender application that would send
messages on the application queue:

Example 7-1 PtpSender.java

import com.ibm.mq.*;

public class Typesetter {

 public static void main(String args[]) {

 try
 {

 String hostName = "ITSOG" ;
 String channel = "JAVA.CLIENT.CHNL" ;
 String qManager = "ITSOG.QMGR1" ;
 String qName = "SAMPLE.QUEUE" ;

 //Set up the MQEnvironment properties for Client Connections
 MQEnvironment.hostname = hostName ;
 MQEnvironment.channel = channel ;
 MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

 //Connection To the Queue Manager
 Chapter 7. Programming with Java 217

 MQQueueManager qMgr = new MQQueueManager(qManager) ;

 /* Set up the open options to open the queue for out put and
 additionally we have set the option to fail if the queue manager is
 quiescing.
 */
 int openOptions = MQC.MQOO_OUTPUT | MQC.MQOO_FAIL_IF_QUIESCING ;

 //Open the queue
 MQQueue queue = qMgr.accessQueue(qName,
 openOptions,

 null,
 null,
 null);

 // Set the put message options , we will use the default setting.
 MQPutMessageOptions pmo = new MQPutMessageOptions();

 /* Next we Build a message The MQMessage class encapsulates the data buffer
 that contains the actual message data, together with all the MQMD
parameters
 that describe the message.
 To Build a new message, create a new instance of MQMessage class and use
 writxxx (we will be using writeString method). The put() method of
MQQueue also
 takes an instance of the MQPutMessageOptions class as a parameter.
 */

 MQMessage outMsg = new MQMessage(); //Create The message buffer
 outMsg.format = MQC.MQFMT_STRING ; // Set the MQMD format field.

 //Prepare message with user data
 String msgString = "Test Message from PtpSender program ";
 outMsg.writeString(msgString);

 // Now we put The message on the Queue
 queue.put(outMsg, pmo);

 //Commit the transaction.
 qMgr.commit();

 System.out.println(" The message has been Sussesfully put\n\n#########");
 // Close the the Queue and Queue manager objects.
 queue.close();
 qMgr.disconnect();

 }
catch (MQException ex)
218 MQSeries Programming Patterns

{
 System.out.println("An MQ Error Occurred: Completion Code is :\t" +
ex.completionCode + "\n\n The Reason Code is :\t" + ex.reasonCode);
 ex.printStackTrace();
 }

 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Simple message receiver application
Our next point-to-point client program is the message receiver application, which
gets the message that was sent by the PtpSender application and prints out the
message on the console.

The steps involved are:

� Import the MQSeries Java API package.
� Set up the environment properties for client connection.
� Connect to the queue manager.
� Set the options for opening the MQSeries queue.
� Open the application queue for getting messages.
� Set the options to get messages from the application queue.
� Create a message buffer.
� Get the message from the queue on to the message buffer.
� Read the user data from the message buffer and display on the console.

Example 7-2 PtpReceiver.java

import com.ibm.mq.* ;
public class PtpReceiver {

 public static void main(String args[]) {

 try
 {

 String hostName = "ITSOG" ;
 String channel = "JAVA.CLIENT.CHNL" ;
 String qManager = "ITSOG.QMGR1" ;
 String qName = "SAMPLE.QUEUE" ;

 //Set up the MQEnvironment properties for Client Connections
 MQEnvironment.hostname = hostName ;
 MQEnvironment.channel = channel ;
 Chapter 7. Programming with Java 219

 MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

 //Connection To the Queue Manager
 MQQueueManager qMgr = new MQQueueManager(qManager) ;

 /* Set up the open options to open the queue for out put and
 additionally we have set the option to fail if the queue manager is
 quiescing.
 */
 int openOptions = MQC.MQOO_INPUT_SHARED | MQC.MQOO_FAIL_IF_QUIESCING ;

 //Open the queue
 MQQueue queue = qMgr.accessQueue(qName,
 openOptions,

 null,
 null,
 null);

 // Set the put message options.
 MQGetMessageOptions gmo = new MQGetMessageOptions();
 gmo.options = gmo.options + MQC.MQGMO_SYNCPOINT ; //Get messages unde sync
point control
 gmo.options = gmo.options + MQC.MQGMO_WAIT ; // Wait if no messages on the
Queue
 gmo.options = gmo.options + MQC.MQGMO_FAIL_IF_QUIESCING ; // Fail if Qeue
Manager Quiescing
 gmo.waitInterval = 3000 ; // Sets the time limit for the wait.

 /* Next we Build a message The MQMessage class encapsulates the data buffer
that contains the actual message data, together with all the MQMD parameters
that describe the message.
*/

 MQMessage inMsg = new MQMessage(); //Create the message buffer

 // Get the message from the queue on to the message buffer.
 queue.get(inMsg, gmo) ;

 // Read the User data from the message.
 String msgString = inMsg.readString(inMsg.getMessageLength());

 System.out.println(" The Message from the Queue is : " + msgString);

 //Commit the transaction.
 qMgr.commit();
 // Close the the Queue and Queue manager objects.
 queue.close();
220 MQSeries Programming Patterns

 qMgr.disconnect();

 }
 catch (MQException ex)
{
 System.out.println("An MQ Error Occurred: Completion Code is :\t" +
ex.completionCode + "\n\n The Reason Code is :\t" + ex.reasonCode);
 ex.printStackTrace();
 }

 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Request/reply
In a request/reply messaging pattern, one application sends a message (request
message) to another application (reply producer) responding to the request
message. The reply-producing application gets the request message, processes
the request, and sends a response back to the requesting application. The reply
is send to the queue specified by the request message header property of
replyToQueue under the queue manager specified by the replyToQueueManager
message header property of the request message. The requesting application
sets these message header properties on the request message before putting
the message on the queue.

The requesting application lets the queue manager generate a unique
messageId, and the replying application copies the messageId of the request
message on to the correlationId of the reply message. The requesting application
uses the correlationId value of the reply message to map a response back to the
original request.

We illustrate the request reply pattern with a pair of simple applications. The first
application, which we call the requester, puts a simple message on to the queue
(request queue). The requester sets the replyToQueue and
replyToQueueManager message header properties on the request message
before putting the request message on the request queue. Then it opens the
reply queue and waits for messages with the correlationId matching the
messageId value of the outgoing request message. The responding application
servicing the request message gets the request message, prepares the reply
message, and sends it to the reply queue under the queue manager specified on
the request message. It would also copy the messageId from the request
message on to the correlationId message header field of the response message.
 Chapter 7. Programming with Java 221

The application, Requester.java, is the application that would send the request
message and expect a reply from the responding application.

The steps involved are:

� Import the necessary package.

� Set the MQEnvironment properties for client connection.

� Connect to the queue manager.

� Open the request queue for output.

� Set the put message options.

– Prepare the request message.
– Set the reply to queue name.

� Set the reply to queue manager name.

� Put the request message on the request queue.

� Close the request queue.

� Open the reply queue for input.

� Set the get message options.

– Set option to match correlation ID on the response message.
– Issue the get on the reply queue with wait (for response message with

matching correlationId.)

Example 7-3 Requester.java

import com.ibm.mq.*;

public class Requester {

 public static void main(String args[]) {

 try
 {

 String hostName = "ITSOG" ;
 String channel = "JAVA.CLIENT.CHNL" ;
 String qManager = "ITSOG.QMGR1" ;
 String requestQueue = "SAMPLE.REQUEST" ;
 String replyToQueue = "SAMPLE.REPLY" ;

Important: It is recommended that you use a definite wait time on the get call
for response messages. The wait interval can be derived from the maximum
time the system is allowed to wait for a response.
222 MQSeries Programming Patterns

 String replyToQueueManager = "ITSOG.QMGR1" ;

 //Set up the MQEnvironment properties for Client Connections
 MQEnvironment.hostname = hostName ;
 MQEnvironment.channel = channel ;
 MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

 //Connection To the Queue Manager
 MQQueueManager qMgr = new MQQueueManager(qManager) ;

 /* Set up the open options to open the queue for out put and
 additionally we have set the option to fail if the queue manager is
 quiescing.
 */
 int openOptions = MQC.MQOO_OUTPUT | MQC.MQOO_FAIL_IF_QUIESCING ;

 //Open the queue
 MQQueue queue = qMgr.accessQueue(requestQueue,
 openOptions,

 null,
 null,
 null);

 // Set the put message options , we will use the default setting.
 MQPutMessageOptions pmo = new MQPutMessageOptions();
 pmo.options = pmo.options + MQC.MQPMO_NEW_MSG_ID ;
 pmo.options = pmo.options + MQC.MQPMO_SYNCPOINT ;

 MQMessage outMsg = new MQMessage(); //Create the message buffer
 outMsg.format = MQC.MQFMT_STRING ; // Set the MQMD format field.
 outMsg.messageFlags = MQC.MQMT_REQUEST ;
 outMsg.replyToQueueName = replyToQueue;
 outMsg.replyToQueueManagerName = replyToQueueManager ;

 //Prepare message with user data
 String msgString = "Test Request Message from Requester program ";
 outMsg.writeString(msgString);

 // Now we put The message on the Queue
 queue.put(outMsg, pmo);

 //Commit the transaction.
 qMgr.commit();

 System.out.println(" The message has been Sussesfully put\n\n#########");
 // Close the the Request Queue
 Chapter 7. Programming with Java 223

 queue.close();

 // Set openOption for response queue
 openOptions = MQC.MQOO_INPUT_SHARED | MQC.MQOO_FAIL_IF_QUIESCING ;
 MQQueue respQueue = qMgr.accessQueue(replyToQueue,
 openOptions,

 null,
 null,
 null);

 MQMessage respMessage = new MQMessage();
 MQGetMessageOptions gmo = new MQGetMessageOptions();
 gmo.options = gmo.options + MQC.MQGMO_SYNCPOINT ; //Get messages under sync
point control
 gmo.options = gmo.options + MQC.MQGMO_WAIT ; // Wait for Response Message
 gmo.matchOptions = MQC.MQMO_MATCH_CORREL_ID;
 gmo.waitInterval = 10000 ;
 respMessage.correlationId = outMsg.messageId ;

 // Get the response message.
 respQueue.get(respMessage, gmo);
 String response = respMessage.readString(respMessage.getMessageLength());
 System.out.println("The response message is : " + response);
 qMgr.commit();
 respQueue.close();
 qMgr.disconnect();

 }

 catch (MQException ex)
{
 System.out.println("An MQ Error Occurred: Completion Code is :\t" +
ex.completionCode + "\n\n The Reason Code is :\t" + ex.reasonCode);
 ex.printStackTrace();
 }

 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

224 MQSeries Programming Patterns

Responder application
The responder application, Responder.java, processes the request message
from the request queue and sends a reply back to the requesting application to
the request queue specified.

Example 7-4 Responder.java

import com.ibm.mq.* ;
public class Responder {

 public static void main(String args[]) {

 try
 {

 String hostName = "ITSOG" ;
 String channel = "JAVA.CLIENT.CHNL" ;
 String qManager = "ITSOG.QMGR1" ;
 String qName = "SAMPLE.REQUEST" ;

 //Set up the MQEnvironment properties for Client Connections
 MQEnvironment.hostname = hostName ;
 MQEnvironment.channel = channel ;
 MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

 //Connection To the Queue Manager
 MQQueueManager qMgr = new MQQueueManager(qManager) ;

 /* Set up the open options to open the queue for out put and
 additionally we have set the option to fail if the queue manager is
 quiescing.
 */
 int openOptions = MQC.MQOO_INPUT_SHARED | MQC.MQOO_FAIL_IF_QUIESCING ;

 //Open the queue
 MQQueue queue = qMgr.accessQueue(qName,
 openOptions,

 null,
 null,
 null);

// Set the put message options.
 MQGetMessageOptions gmo = new MQGetMessageOptions();
 gmo.options = gmo.options + MQC.MQGMO_SYNCPOINT ; //Get messages unde sync
point control
 gmo.options = gmo.options + MQC.MQGMO_WAIT ; // Wait if no messages on the
Queue
 Chapter 7. Programming with Java 225

 gmo.options = gmo.options + MQC.MQGMO_FAIL_IF_QUIESCING ; // Fail if Qeue
Manager Quiescing
 gmo.waitInterval = 3000 ; // Sets the time limit for the wait.

 /* Next we Build a message The MQMessage class encapsulates the data buffer
 that contains the actual message data, together with all the MQMD
parameters
 that describe the message.
 To Build a new message, create a new instance of MQMessage class and use
 writxxx (we will be using writeString method). The put() method of
MQQueue also
 takes an instance of the MQPutMessageOptions class as a parameter.
 */

 MQMessage inMsg = new MQMessage(); //Create the message buffer

 // Get the message from the queue on to the message buffer.
 queue.get(inMsg, gmo) ;

 // Read the User data from the message.
 String msgString = inMsg.readString(inMsg.getMessageLength());

 System.out.println(" The Message from the Queue is : " + msgString);

//Check if message if of type request message and reply to the request.
 if (inMsg.messageFlags == MQC.MQMT_REQUEST) {
 System.out.println("Preparing To Reply To the Request ");
 String replyQueueName = inMsg.replyToQueueName ;
 openOptions = MQC.MQOO_OUTPUT | MQC.MQOO_FAIL_IF_QUIESCING ;
 MQQueue respQueue = qMgr.accessQueue(replyQueueName,
 openOptions,

 inMsg.replyToQueueManagerName,
 null,
 null);

 MQMessage respMessage = new MQMessage() ;
 respMessage.correlationId = inMsg.MessageId;
 MQPutMessageOptions pmo = new MQPutMessageOptions();
 respMessage.format = MQC.MQFMT_STRING ;
 respMessage.messageFlags = MQC.MQMT_REPLY ;
 String response = "Reply from the Responder Program " ;
 respMessage.writeString(response);
 respQueue.put(respMessage, pmo);
 System.out.println("The response Successfully send ");

 qMgr.commit();
 respQueue.close();
 }

 queue.close();
226 MQSeries Programming Patterns

 qMgr.disconnect();

 }

 catch (MQException ex)
{
 System.out.println("An MQ Error Occurred: Completion Code is :\t" +
ex.completionCode + "\n\n The Reason Code is :\t" + ex.reasonCode);
 ex.printStackTrace();
 }

 catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Message grouping
An application program may need to group a set of updates into a unit of work.
Such updates are usually logically related and must all be successful for data
integrity to be preserved. Data integrity would be lost if one updateoup
succeeded while another failed. MQSeries supports transactional messaging.

A unit of work commits when it completes successfully. At this point all updates
made within that unit of work are made permanent and irreversible. Alternatively,
all updates are backed out if the unit of work fails. Syncpoint coordination is the
process by which a unit of work is either committed or backed out with integrity.

Logical message
Logical messages within a group are identified by the GroupId and
MsgSeqNumber fields. The MsgSeqNumber starts at 1 for the first message
within a group, and if a message is not in a group, the value of the field is 1.

Logical messages within a group can be used to:

� Ensure ordering (if this is not guaranteed under the circumstances in which
the message is transmitted).

� Allow applications to group together similar messages (for example, those
that must all be processed by the same server instance).
 Chapter 7. Programming with Java 227

Each message within a group consists of one physical message, unless it is split
into segments. Each message is logically a separate message, and only the
GroupId and MsgSeqNumber fields in the MQMD need bear any relationship to
other messages in the group. Other fields in the MQMD are independent; some
may be identical for all messages in the group whereas others may be different.
For example, messages in a group may have different format names, CCSIDs,
encodings, and so on.

Simple GroupSender application
Our next example, GroupSender.java, illustrates sending messages in a group.
The application would put 10 simple messages on the queue as a group within a
unit of work.

The steps involved are:

� Import the necessary packages.

� Set MQEnvironment properties for client connection.

� Connect to the queue manager.

� Set the queue open options for output.

� Open the queue for output.

� Set the put message options.

– Set option to maintain logical order of messages.

– Set option to request the queue manager to generate GroupId.

� Create a message buffer.

� Set message header properties.

– Set messageFlags property to indicate that the messages are in a group.

– Set the format property to String.

� Create and put the individual messages on the queue.

� On the last message in the group, set the messageFlags property to indicate
that the message is the last one in the group.

� Commit the transaction.

Example 7-5 GroupSender.java

import com.ibm.mq.*;

public class GroupSender {

private MQQueueManager qmgr;
private MQQueue outQueue;
private String queueName = "SAMPLE.QUEUE" ;
228 MQSeries Programming Patterns

private String host = "ITSOG" ;
private String channel = "JAVA.CLIENT.CHNL" ;
private String qmgrName = "ITSOG.QMGR1" ;
private MQMessage outMsg;
private MQPutMessageOptions pmo;

public static void main (String args[]) {

 GroupSender gs = new GroupSender();
 gs.runGoupSender();

 }
 public void runGoupSender() {
 try {
 init();
 sendGroupMessages();
 qmgr.commit();
 System.out.println("\n Messages successfully Send ") ;
 }
 catch (MQException mqe) {
 mqe.printStackTrace();
 try{
 System.out.println("\n Backing out Transaction ") ;
 qmgr.backout();
 System.exit(2);
 }
 catch(Exception e) {
 e.printStackTrace();
 System.exit(2);
 }
 }
 catch(Exception e) {
 e.printStackTrace();
 System.exit(2);
 }

 }
 private void init() throws Exception {

 // Set The MQEnvironment for Client Connection
 MQEnvironment.hostname = host ;
 MQEnvironment.channel = channel ;
 MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

 //Connect to The Queue Manager
 qmgr = new MQQueueManager (qmgrName);

 // Set queue open option for output
 Chapter 7. Programming with Java 229

 int opnOptn = MQC.MQOO_OUTPUT | MQC.MQOO_FAIL_IF_QUIESCING ;

 // Open the Queue for output
 outQueue = qmgr.accessQueue (queueName , opnOptn,null,null,null) ;

 }

 private void sendGroupMessages() throws Exception {

 // Set Put Message Options
 pmo = new MQPutMessageOptions();
 pmo.options = pmo.options + MQC.MQPMO_LOGICAL_ORDER ;
 pmo.options = pmo.options + MQC.MQPMRF_GROUP_ID ;

 outMsg = new MQMessage();
 outMsg.messageFlags = MQC.MQMF_MSG_IN_GROUP ; // Set message flag
indicating that
 // the messages belong to a
group
 outMsg.format = MQC.MQFMT_STRING ; // Set the format for the message to
be String

String msgData = null;
 // Send 10 simple messages as a group.
 int i = 10;
 while(i > 0) {

 msgData = "This is the " + i + " th message in the group " ;
 outMsg.writeString(msgData);
 if (i == 1)
 outMsg.messageFlags = MQC.MQMF_LAST_MSG_IN_GROUP ; //
indicates that the
 // the 10 th message is
the last in group.

 i--;
 // Put each message at a time to the queue.
 outQueue.put(outMsg, pmo);
 outMsg.clearMessage(); // clear the buffer for re-use with
next message in group.
}

 }

}

230 MQSeries Programming Patterns

Simple GroupReceiver application
Our next example, GroupReceiver.java, illustrates getting messages in a group.
The application would get messages in a group (put by GroupSender
application) from the queue as a group within a unit of work.

The steps involved are:

� Import the necessary packages.

� Set MQEnvironment properties for client connection.

� Connect to the queue manager.

� Set the queue open options for input.

� Open the queue for input.

� Set the put message options.

– Set option to get messages under syncpoint control.

– Set option to process messages only when all messages within the group
are available.

– Set option to process messages in the logical order.

� Create a message buffer.

� Set message header properties.

� Create and put the individual messages on the queue.

� Get the messages from the queue until the last message is processed.

� Display the message content on the console.

� Commit the transaction.

Example 7-6 GroupReceiver.java

import com.ibm.mq.*;

public class GroupReceiver {

private MQQueueManager qmgr;
private MQQueue inQueue;
private String queueName = "SAMPLE.QUEUE" ;
private String host = "ITSOG" ;
private String channel = "JAVA.CLIENT.CHNL" ;
private String qmgrName = "ITSOG.QMGR1" ;
private MQMessage inMsg;
private MQGetMessageOptions gmo;

public static void main (String args[]) {

 GroupReceiver gs = new GroupReceiver();
 Chapter 7. Programming with Java 231

 gs.runGoupReceiver();

 }
 public void runGoupReceiver() {
 try {
 init();
 getGroupMessages();
 qmgr.commit();
 System.out.println("\n Messages successfully Send ") ;
 }
 catch (MQException mqe) {
 mqe.printStackTrace();
 try{
 System.out.println("\n Backing out Transaction ") ;
 qmgr.backout();
 System.exit(2);
 }
 catch(Exception e) {
 e.printStackTrace();
 System.exit(2);
 }
 }
 catch(Exception e) {
 e.printStackTrace();
 System.exit(2);
 }

 }
 private void init() throws Exception {
 //Set the MQEnvironment Properties for client connection
 MQEnvironment.hostname = host ;
 MQEnvironment.channel = channel ;
 MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

 //Connect to the Queue Manager
 qmgr = new MQQueueManager (qmgrName);

 // Set the Queue open option for input
 int opnOptn = MQC.MQOO_INPUT_AS_Q_DEF | MQC.MQOO_FAIL_IF_QUIESCING ;

 // Open the Queue for input
 inQueue = qmgr.accessQueue (queueName , opnOptn,null,null,null) ;

}

 private void getGroupMessages() throws Exception {

 // Set the get message options
232 MQSeries Programming Patterns

 gmo = new MQGetMessageOptions();
 gmo.options = MQC.MQGMO_FAIL_IF_QUIESCING;
 gmo.options = gmo.options + MQC.MQGMO_SYNCPOINT ;
 gmo.options = gmo.options + MQC.MQGMO_WAIT ; // Wait for messages
 gmo.waitInterval = 5000 ; // Set wait time limit in ms
 gmo.options = gmo.options + MQC.MQGMO_ALL_MSGS_AVAILABLE ;//Get
messages only when all
 // messages of the
group are available
gmo.options = gmo.options + MQC.MQGMO_LOGICAL_ORDER ; // Get messages in the
logical order.
 //gmo.matchOptions = MQC.MQMO_MATCH_GROUP_ID ;

 // Create the message buffer.
 inMsg = new MQMessage();

 String msgData = null;
// Process the messages of the group
 while(true) {
 inQueue.get(inMsg, gmo);
 int msgLength = inMsg.getMessageLength();

 msgData = inMsg.readString(msgLength);
 System.out.println(" The message is \n " + msgData);
 char x = gmo.groupStatus ;
 // Check for the last message flag
 if(x == MQC.MQGS_LAST_MSG_IN_GROUP) {
 System.out.println("B Last Msg in Group") ;
 break;
 }
 inMsg.clearMessage();
}

 }

}

Although we have covered publish/subscribe patterns in each of the other
chapters for Java, it is highly recommended that you follow this up by reading
MQSeries Publish/Subscribe Applications, SG24-6282, which can be
downloaded from:

http://www.ibm.com/redbooks
 Chapter 7. Programming with Java 233

http://www.ibm.com/redbooks

234 MQSeries Programming Patterns

Chapter 8. Programming with JMS

In this chapter we discuss the Java Messaging Service (JMS) Interface concepts
and MQSeries implementation, and programming with JMS. The JMS concepts
are discussed in the context of programming patterns in messaging.

8

© Copyright IBM Corp. 2002. All rights reserved. 235

8.1 What is JMS?
Java Message Services (JMS) is the standard API for messaging, such as the
JDBC API for databases. The JMS specification (1.0.2) was developed by Sun
Microsystems with the active involvement of IBM, other enterprise messaging
vendors, transaction processing vendors, and RDBMS vendors. JMS provides a
common model for Java programs to interact with messaging systems
performing various operations against the messaging systems objects. The
common operations that a program uses against a messaging systems’s objects
are creating messages, sending messages, receiving messages and reading
messages from the enterprise messaging system. JMS provides a common way
for programs being developed in Java to access these messaging system
operations.

JMS has two messaging styles, or in other words two domains:

� One-to-one, or point-to-point model
� Publish/subscribe model

JMS is only a specification. Each Enterprise Messaging System vendor must
provide classes that implement the specification for their specific messaging
system.

In this chapter we describe the MQSeries implementation of the JMS API,
discuss the JMS API concepts and the MQSeries JMS implementation
capabilities, and illustrate the use of MQSeries JMS with different scenarios in
which MQSeries JMS implementation can be used.

Why JMS?
The JMS standard is important because:

� It is the first enterprise messaging API that has achieved wide cross-industry
support.

� It simplifies the development of enterprise applications by providing standard
messaging concepts and conventions that apply across a wide range of
enterprise messaging systems.

� It leverages existing, enterprise-proven messaging systems.

� It allows you to extend existing message-based applications by adding new
JMS clients that are interpreted fully with their existing non-JMS clients.

� It allows you to write portable, message-based business applications.
236 MQSeries Programming Patterns

8.2 Overview
JMS is a set of interfaces and associated semantics that define how a JMS client
accesses the facilities of an enterprise messaging product. Messages, as
described here, are asynchronous requests, reports or events that are consumed
by enterprise applications. They contain vital information needed to coordinate
these systems. They contain precisely formatted data that describes specific
business actions. Through the exchange of these messages, each application
tracks the progress of the enterprise.

JMS defines a common set of enterprise messaging concepts and facilities. It
attempts to minimize the set of concepts a Java language programmer must
learn to use enterprise messaging products. It strives to maximize the portability
of messaging applications. The JMS standard provides a vendor-independent
programming interface, but does not define a communications protocol.

The JMS model
JMS defines a generic view of a message passing service. It is important to
understand this view, and how it maps onto the underlying MQSeries transport.
The generic JMS model is based on interfaces that are defined in Sun’s
javax.jms package and shown in Figure 8-1.
 Chapter 8. Programming with JMS 237

Figure 8-1 JMS model

Connections
Connections provide access to the underlying transport, and are used to create
sessions. In MQSeries context, a connection provides a place to hold the
parameters, such as queue manager name, remote host name (in Java client
connectivity), etc. In other words, an MQSeries JMS Connection typically
allocates MQSeries resources outside the Java virtual machine. Connections
also support concurrent use.

A connection can provide the following benefits:

� Encapsulate an open connection with a JMS provider. It typically represents
an open TCP/IP socket between a client and a provider service daemon.

� Its creation is where client authentication takes place.

� It can specify a unique client identifier.
238 MQSeries Programming Patterns

� It provides ConnectionMetaData.

� It supports an optional ExceptionListener.

Due to the authentication and communication setup done when a connection is
created, a connection is a relatively heavyweight JMS object. Most clients will do
all their messaging with a single connection. Other more advanced applications
may use several connections. JMS does not architect a reason for using multiple
connections; however, there may be operational reasons for doing so.

A JMS client typically creates a connection, one or more sessions, and a number
of message producers and consumers. When a connection is created, it is in
stopped mode. That means that no messages are being delivered.

It is typical to leave the connection in stopped mode until setup is complete. At
that point, the connection's start() method is called and messages begin arriving
at the connection's consumers. This setup convention minimizes any client
confusion that may result from asynchronous message delivery while the client is
still in the process of setting itself up.

A connection can immediately be started and the setup can be done afterwards.
Clients that do this must be prepared to handle asynchronous message delivery
while they are still in the process of setting up.

Connections are not created directly, but are built using a connection factory.
Factory objects can be stored in a JNDI namespace, thus insulating the JMS
application from provider-specific information. The connection factory objects are
created using JMSAdmin, the MQSeries JMS administration tool. This tool
enables administrators to define the properties of eight types of MQSeries JMS
objects to the JNDI namespace. Please refer to 8.4.9, “Administering JMS JNDI
objects with VisualAge for Java using JMSAdmin” on page 260.

Creating a connection
A client uses a connection factory to create connections. The type of connection
factory to use depends upon the type of connection you want to make:

� For a PTP connection, a QueueConnectionFactory or
XAQueueConnectionFactory is used to obtain a QueueConnection or
XAQueueConnection.

Important: Connections are created in a stopped mode.

Note: A message producer can send messages while a connection is
stopped.
 Chapter 8. Programming with JMS 239

� For a publish/subscribe messaging pattern, TopicConnectionFactory or
XATopicConnectionFactory is used to obtain a TopicConnection or a
XATopicConnection.

To create a connection, do the following:

� Retrieve the factory object from JNDI namespace

JNDI API provides naming and directory functionality to applications written in
Java. It is designed especially for Java by using Java's object model. Using
JNDI, Java applications can store and retrieve named Java objects of any
type. In addition, JNDI provides methods for performing standard directory
operations, such as associating attributes with objects and searching for
objects using their attributes.

Different naming and directory service providers can be plugged in
seamlessly behind this common API. This allows Java applications to take
advantage of information in a variety of existing naming and directory
services, such as LDAP, NDS, DNS, and NIS(YP), and allows Java
applications to coexist with legacy applications and systems.

In the JNDI, all naming and directory operations are performed relative to a
context. There are no absolute roots. Therefore, the JNDI defines an initial
context, which is the starting point for resolution of names for naming and
directory operations.Once you have an initial context, you can use it to look
up other contexts and objects.

� To retrieve an object from a JNDI namespace, an initial context must be set
up, as shown in the following code snippet:

import javax.jms.*
import javax.naming.*;
import javax.naming.directory.*;
java.util.Hashtable ;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CCONTEXT_FACTORY, icf) ;
env.put(Context.PROVIDER_URL, url);
Context ctx = new InitialDirContext(env) ;

Where icf defines a factory class for the initial context, and url defines a
context-specific URL.

� Once the initial context is obtained, objects are retrieved from the namespace
by using the lookup() method. The following code retrieves a
QueueConnectionFactory name firstQCF from an LDAP-based namespace:

QueueConnectionFactory qFactory ;
queueFactory = (QueueConnectionFactory)ctx.lookup(“cn=firstQCF”) ;

� Use the factory object to obtain a connection.
240 MQSeries Programming Patterns

The createQueueConnection() method on the factory object is used to create
a connection, for example:

QueueConnection connection ;
connection = qFactory.createQueueConnection();

� Starting the connection

The JMS specification defines that the connections should be created in the
“stopped" state. The connection has to be explicitly started before you can
send messages using the connection.

The connection is started using the start() method, for example:

connection.start();

Sessions
Provides a context for producing and consuming messages, including the
methods used to create message producers and message consumers.

A JMS Session is a single-threaded context for producing and consuming
messages. Although it may allocate provider resources outside the Java virtual
machine, it is considered a lightweight JMS object.

A session can be created using the createQueueSession() or
createTopicSession() method of the respective connection object.

The create session method takes two parameters:

1. A boolean that determines whether the session is transacted or
non-transacted.

A transacted session is one in which a group of messages are sent or
received as a unit on an all-or-nothing basis.

A non-transacted session is one in which the messages are sent or received
individually.

2. A parameter that determines the acknowledge mode.

For example:

session = connection.createQueueSession(false , Session.AUTO_ACKNOWLEDGE) ;

This is the simplest case of creating a non-transacted session with
AUTO_ACKNOWLEDGE. A connection is thread safe, but sessions and the
objects that are created from them are not thread safe. The recommended
practice for multi-threaded applications is to use a separate session for each
thread.

A session has several purposes:

� It is a factory for its message producers and consumers.

 Chapter 8. Programming with JMS 241

� It supplies provider-optimized message factories.

� It supports a single or a series of transactions that combine work spanning its
producers and consumers into atomic units.

� A session defines a serial order for the messages it consumes and the
messages it produces.

� A session retains messages it consumes until they have been acknowledged.

� A session serializes execution of message listeners registered with its
message consumers.

A session can create and service multiple message producers and consumers.

One typical use is to have a thread block on a synchronous message consumer
until a message arrives. The thread may then use one or more of the session's
message producers.

If a client wants to have one thread producing messages while others consume
them, the client should use a separate session for its producing thread.

Once a connection has been started, any session with a registered message
listener, or listeners, is dedicated to the thread of control that delivers messages
to it. It is erroneous for client code to use the session or any of its constituent
objects from another thread of control. The only exception to this is the use of the
session or connection close method.

It should be easy for most clients to partition their work naturally into sessions.
This model allows clients to start simply and incrementally add message
processing complexity as their need for concurrency grows.

The close method is the only session method that can be called while some other
session method is being executed in another thread.

A session may be optionally specified as transacted. Each transacted session
supports a single series of transactions. Each transaction groups a set of
message sends and a set of message receives into an atomic unit of work. In
effect, transactions organize a session's input message stream and output
message stream into series of atomic units. When a transaction commits, its
atomic unit of input is acknowledged and its associated atomic unit of output is
sent. If a transaction rollback is done, its sent messages are destroyed and the
session's input is automatically recovered.

The content of a transaction's input and output units is simply those messages
that have been produced and consumed within the session's current transaction.
242 MQSeries Programming Patterns

A transaction is completed using either its session's commit or rollback method.
The completion of a session's current transaction automatically begins the next.
The result is that a transacted session always has a current transaction within
which its work is done.

Message producers
A JMS client uses message producers to send messages to a specific
destination. Message producers are created by passing the destination to a
create message producer method supplied by a session object.

In point-to-point messaging, this would be a QueueSender that is created using
the createSender method on a QueueSession object. A QueueSender is
normally created for a specific queue, so that all the messages sent using that
sender are sent to the same destination. The destination is specified using a
Queue object. Queue objects can be either created at runtime or built and stored
in a JNDI namespace. For example:

Queue ioQueue ;
ioQueue = (Queue).ctx.lookup(qLookUp) ;
sender = session.createSender(ioQueue);

In publish/subscribe messaging, this would be a TopicPublisher that is created
using a createPublisher method on a TopicSession object.

Normally the Topic is specified when a TopicPublisher is created. In this case,
attempting to use the methods for an unidentified TopicPublisher will throw an
UnsupportedOperationException.

For example:

Topic topic ;
topic = (Topic)ctx.lookup(“cn=first.topic”) ;
TopicPublisher pub = session.createPublisher(topic);

A client also has the option of creating a message producer without supplying a
destination. In this case, a destination must be input on every send operation. A
typical use for this style of message producer is to send replies to requests using
the request's replyTo destination.

A client can specify a default delivery mode, priority and time-to-live for
messages sent by a message producer. It can also specify delivery mode,
priority and time-to-live per message.
 Chapter 8. Programming with JMS 243

A client can specify a time-to-live value in milliseconds for each message it
sends. This value defines a message expiration time, which is the sum of the
message's time-to-live and the GMT time at which it is sent (for transacted
sends, this is the time the client sends the message, not the time the transaction
is committed).

Sending a message
Messages are sent using message producers. So when sending a message in
the point-to-point (PTP) model, you would use QueueSender objects, and in the
publish/subscribe model, you would use TopicPublisher objects.

In the PTP model, use the send() method of the QueueSender to send
messages. For example:

outmessage = session.createTextMessage();
outmessage.setText(“Sample Message “) ;
sender.send(outMessage);

In the publish/subscribe model, use the publish method of the TopicPublisher
object to publish messages. For example:

pub.publish(outMessage);

Message consumers
A message consumer is used to receive messages. The MessageConsumer
interface is the parent interface for all message consumers. In the PTP model,
this would be QueueReceiver. In the publish/subscribe model, this would be
TopicSubscriber.

A message consumer can be created with a message selector, which allows the
clients to select a subset of messages based on the criteria specified in the
message selector. Please refer to 8.7, “Message selectors” on page 289 for
details.

A message consumer client may either synchronously receive a message or
have the messages asynchronously delivered as they arrive. A client can request
the next message from a message consumer using one of its receive methods.
There are several variations of receive that allow a client to poll or wait for the
next message.

A client can register a MessageListener object with a message consumer. As
messages arrive at the message consumer, it delivers them by calling the
MessageListeners onMessage method. Refer to 8.6, “Asynchronous processing”
on page 285 for further information.
244 MQSeries Programming Patterns

In the PTP model, a QueueReceiver is created by using the createReceiver()
method on the QueueSession object. The method takes a Queue parameter that
defines where the messages are to be received from. For example:

QueueReceiver queueReceiver = session.createReceiver(ioQueue) ;

In the publish/subscribe model, a TopicSubscriber object is created by using
createSubscriber() method of the TopicSession object. For example:

TopicSubscriber sub = session.createSubscriber(topic);

Receiving messages
Messages are received using message consumers. In PTP messaging,
QueueReceiver objects would be used to receive messages, and in
publish/subscribe messaging, TopicSubscriber objects would be used to receive
messages.

In the PTP model, you can use the receive method of the QueueReceiver object
to receive messages. For example:

Message inMessage = queueReceiver.receive(800) ;

The parameter specified is the timeout in milliseconds. The method calls to
receive the next message that arrives within the specified timeout interval.

In the publish/subscribe model, use the receive()method of the TopicSubscriber
to receive subscriptions. For example:

Message inMsg = sub.receive() ;

The fragment of code performs a get with a wait.

In MQSeries terms, a connection provides a scope for temporary queues. Also, it
provides a place to hold the parameters that control how to connect to MQSeries.
Examples of these parameters are the name of the queue manager and the
name of the remote host if you use the MQSeries Java client connectivity.
Session contains an HCONN and therefore defines a transactional scope.

The message producer and message consumer contain an HOBJ that defines a
particular queue for writing to or reading from. Note that normal MQSeries rules
apply. Only a single operation can be in progress per HCONN at any given time.
Therefore, the message producers or message consumers associated with a
session cannot be called concurrently.

Important: Note that a connection is thread safe, but sessions, message
producers, and message consumers are not. The recommended strategy is to
use one session per application thread.
 Chapter 8. Programming with JMS 245

This is consistent with the JMS restriction of a single thread per session. Puts
can use remote queues, but gets can only be applied to queues on the local
queue manager. The generic JMS interfaces are subclassed into more specific
versions for point-to-point and publish/subscribe behavior. The point-to-point
versions are:

� QueueConnection QueueSession QueueSender QueueReceiver

A key idea in JMS is that it is possible to write application programs that only
use references to the interfaces in javax.jms. This is strongly recommended.

All vendor-specific information is encapsulated in implementations of:

� QueueConnectionFactory TopicConnectionFactory

– Queue
– Topic

These are known as “administered objects”, that is, objects that can be built
using a vendor-supplied administration tool and can be stored in a JNDI
namespace. A JMS application can retrieve these objects from the namespace
and use them without needing to know which vendor provided the
implementation. MQSeries classes for Java Message Service consists of a
number of Java classes and interfaces that are based on the Sun javax.jms
package of interfaces and classes.

Clients should be written using the Sun interfaces and classes that are listed
below, and that are described in detail in the following sections. The names of the
MQSeries objects that implement the Sun interfaces and classes have a prefix of
“MQ” (unless stated otherwise in the object description). The descriptions include
details about any deviations of the MQSeries objects from the standard JMS
definitions.

Transactions
A session is a sequence of messages sent and received on a connection
between a client and the messaging system. When a session is created, it is
created as either non-transacted (default) or transacted. A transacted session
ensures that a group of messages is sent and received on an all-or-none basis. A
non-transacted session means that messages are sent and received individually.
An example of the use of a transacted session would be online shopping. The
customer opens an order (beginning the transaction). Each item selection the
customer makes is a message to add an item to the order. The customer closes
the order (ending the transaction). If the sender commits the transaction, all
messages in the group are sent. If the sender rolls back the transaction, none of
the items are ordered.
246 MQSeries Programming Patterns

8.3 JMS messages
JMS provides different message types. Each contains some information about its
content.

The message types defined in JMS are:

� BytesMessage
� MapMessage
� ObjectMessage
� StreamMessage
� TextMessage

JMS messages are comprised of three parts:

� Header

Header fields contain information used by the provider for routing and
identifying the messages, as well as information that can used by the client.

� Properties

In addition to the fields in the header, JMS messages provide a facility for
adding optional header fields to a message. These properties can be
categorized as:

– Application-specific properties, which are used by clients to add
processing-specific information for clients processing the messages

– Standard properties, which are JMS-specific properties

– Provider-specific properties, which are required by the native client

� Body

This where the data portion of the message is. JMS provides different types of
message bodies, which cover the majority of messaging styles currently
being used.

8.3.1 Mapping JMS messages onto MQSeries messages
MQSeries messages have three components:

� The MQSeries message descriptor (MQMD)
� An MQSeries MQRFH2 header
� The message body
 Chapter 8. Programming with JMS 247

The MQRFH2 header is optional. The MQRFH2 header is an extensible header
with a fixed portion and a variable header portion. The fixed portion is modeled
on the standard MQSeries header pattern. The MQRFH2 header can carry
JMS-specific data that is associated with the message content, and can also
carry additional information not directly associated with JMS.

The JMS messages are translated or transformed into MQSeries messages in
two ways:

� Mapping

Mapping involves translating the JMS message header and message
properties to the equivalent MQMD values for which there are equivalent
MQMD fields.

� Copying

In cases where the JMS message header and message property values do
not have an equivalent MQMD field, the JMS header field or property is
passed, possibly transformed as a field in the MQRFH2 header.

The inclusion of the MQRFH2 header is optional. In an outgoing message, its
inclusion is determined by a flag in the JMS Destination class. The flag can be
set when defining the JMD administered objects using the JMSAdmin tool. The
administrator can indicate that the JMS client is communicating with a non-JMS
client by setting the MQSeries Destination’s TargetClient value to
JMSC.MQJMS_CLIENT_NONJMS_MQ. Since the MQRFH2 header carries
JMS-specific information, you should include it when the sender knows that the
receiving client is a JMS client. If the receiver is not a JMS client, omit the
MQRFH2 header.

Working with JMS message types
In this section, we illustrate how the different JMS message types can be used,
using an example of a shipping tracking ID being sent as a message from a JMS
client.

Using the TextMessage class
Information in a message can be sent as a human-readable text string, which
can be read and processed, or displayed by a client.

We can send the tracking ID as a string in a TextMessage object as follows:

String trackingId ;
TextMessage message;
message = session.createTextMessage();
message.SetText(trackingId);
248 MQSeries Programming Patterns

Using the BytesMessage class
In BytesMessage, information is sent in a binary format. The information in the
message can be constructed as a bytes array.

Such a message can be prepared as:

byte[] trackingId ;
BytesMessage message ;
message = session.createBytesMessage();
message.writeBytes(trackingId);

Using a map message
In map messages, information can be sent as name value pairs. This way, the
message itself can include the metadata about the data contained in the
message.

In our example of sending a message requesting information on a trackingId, the
name (metadata) can be trackingId and the actual value (say AMX100000)
would be the value of the name value pair.

The message can be constructed as:

String attributeName = “trackingId”;
String attributeValue = “AMX100000”
MapMessage message;
message = session.createMapMessage();
message.setString(attributeName, attributeValue) ;

Note: If the value part was of data type say, long, in that case you can use the
message.setLong method. Use the appropriate method for the data type you are
working with.

Using a stream message
In a stream message, similar to the map message, a message can consist of
various fields written in sequence, each field with its own primitive types. In a
map message, a client can set any number of fields in the map and the
processing client can read specific fields without having to process the entire
map. However, in a stream message, even if the processing client is interested
only in a subset of the fields in the stream message, the client would have to read
each field in the message (and discard the fields it is not interested in). Another
important difference is that in a map message the order of the fields are not
important, but in the stream message the fields are read in the same order they
were written.

A stream message can be constructed as:

String attributeName = “trackingId” ;
String attributeValue = “AMX100000” ;
 Chapter 8. Programming with JMS 249

StreamMessage message;
session.createStreamMessage();
message.writeString(attributeName) ;
message.writeString(attributeValue) ;

Using an object message
Object messages can be used to pass a Java object as a message, which the
message receiving client can use methods in the object to extract the data.

In the following illustration, we use a tracking object:

public class TrackingObject {
private String attributeName ;
private String attributeValue ;

public void setAttributeName (String name) {
attributeName = name ;

}

public void setAttributeValue(String value) {
attributeValue = value ;

}

public String getAttributeName() {
return attributeName;

}
public String getAttributeValue() {

return attributeValue ;
}
}

Using the above tracking object we can sent the tracking information as a
tracking object.

We can construct such a message as:

String attributeName = “trackingId” ;
String attributeValue = “AMX100000” ;

TrackingObject trakingObject = new TrackingObject();
ObjectMessage = message ;

trackingObject.setAttributeName(attributeName) ;
trackingObject.setAttributeValue(attributeValue) ;

message = session.createObjectMessage();
message.setObject(trackingObject) ;
250 MQSeries Programming Patterns

On the receiving side, the client can use the get methods in the tracking object to
extract the data.

Message acknowledgment
JMS messages support the acknowledge method for use when a client has
specified that a JMS consumer’s messages are to be explicitly acknowledged. If
a client uses automatic acknowledgment, calls to acknowledge are ignored.

There are three types of message acknowledgment. The type of message
acknowledgment is specified when creating a session. These different types are:

� AUTO_ACKNOWLEDGE

With AUTO_ACKNOWLEDGE mode, the session automatically
acknowledges a message when it has either successfully returned from a call
to the receiver, or the message listener registered by the message consumer
to process the message successfully returns.

Session session = queueConnection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

� CLIENT_ACKNOWLEDGE

With CLIENT_ACKNOWLEDGE mode, the client explicitly acknowledges a
message by calling the acknowledge method on the message.

Session session = queueConnection.createQueueSession(false,
Session.CLIENT_ACKNOWLEDGE);
Then once the message is processed, the client can issue
message.acknowledge() ;
method to acknowledge the message.

When using the CLIENT_ACKNOWLEDGE mode, care must be taken to
avoid accumulation of large number of unacknowledged messages while
processing the messages. This buildup of unacknowledged messages can
cause resource exhaustion, leading to failures.

� DUPS_OK_ACKNOWLEDGE

The DUPS_OK_ACKNOWLEDGE mode instructs the session to lazily
acknowledge the delivery of the messages. This is likely to result in the
delivery of duplicate messages if JMS fails. It should be used by consumers
who are tolerant in processing duplicate messages. In cases where the client
is tolerant of duplicate messages, some enhancement in performance can be
achieved using this mode, since a session has lower overhead in trying to
prevent duplicate messages.
 Chapter 8. Programming with JMS 251

8.3.2 JMS additional features
Other features that JMS provides include:

� Asynchronous message delivery

– Employs the concept of message listeners
– Uses event-based model that triggers a specified function on preset

events

A JMS client can register a listener object that implements the
MessageListener interface with a message consumer (message receiver).
When the messages arrive for the registered consumer, the message is made
available to the message consumer by calling the listeners onMessage
method.

� Message selectors

– Content-based retrieval of specific messages
– Use of SQL92-based query functions

The JMS message provides a facility to provide user-defined metadata to the
JMS message header (outside the actual body of the message). JMS
programs can take advantage of this facility to select a subset of messages
based on a selection criteria or, in other words, a JMS client can choose only
those messages that it is interested in.

8.4 MQSeries JMS implementation
The key points of JMS implementation with MQSeries are:

� Platform coverage: AIX, HP-UX, Windows NT, Solaris, and Linux

� Comprised of JAR files encapsulating the key functionality:

– com.ibm.mq.jms.jar
– com.ibm.mq.jar

� Administration tool for defining administered objects to a JNDI namespace:

– JMSAdmin

� Available as a product extension via Web download

� MQSeries classes for Java and JMS with MQSeries V5.2

8.4.1 MQSeries JMS installation
For enabling JMS support for MQSeries, you must install the Java classes that
implement the JMS interfaces. The JMS classes for MQSeries can be
downloaded in the MA88 SupportPac from the IBM Web site at:
252 MQSeries Programming Patterns

http://www-3.ibm.com/software/ts/mqseries/txppacs/

This SupportPac is free. You can download the appropriate version for the
supported platforms and install it following the installation instructions provided
with the SupportPac.

Once you have installed the JMS SupportPac, in order to run publish/subscribe
applications with JMS you need to run the MQSC script called
MQJMS_PSQ.mqsc located in the java\bin subdirectory under the MQSeries
installation directory. To run the script on the default queue manager, run the
following command from an operating system command window:

runmqsc < “C:\Program Files\IBM\MQSeries\java\bin\MQJMS_PSQ.mqsc”

where C:\Program Files\IBM\MQSeries\ is assumed to be the MQSeries
installation directory.

8.4.2 JMS administered objects - JNDI and JMSAdmin
Directory services incorporate a naming facility to provide abstract level
namespaces that encapsulate the arrangement and identification of various
entities such as machine name, services, users, provider-specific objects such
as QueueManagers, Queues, Topics etc., in a messaging parlance. This enables
the use of logical namespaces that allow easier discovery and identification of
the objects in the network. The Java Naming and Directory Interface (JNDI) API
implementation provides directory and naming functionality to programs
developed in Java. This allows programs in Java to discover and retrieve objects
of any type from the JNDI namespace.

The JMS administered objects are the objects that a JMS application stores and
retries from the JNDI namespace.The JMS administered objects are normally
created by administrators. The JMS administered objects contains the
configuration information of the underlying messaging service provider
information. In this section we will be discussing defining, administering and
using these objects for developing and deploying JMS applications with
MQSeries.

Important: When you install the JMS SupportPac, all files in the Java
subdirectory of MQSeries installation are backed up during the install and the
new files are copied from the SupportPac. If you had AMI support installed in
your environment, you may need to reinstall the AMI SupportPac.
 Chapter 8. Programming with JMS 253

http://www-3.ibm.com/software/ts/mqseries/txppacs/

8.4.3 JMSAdmin tool
The administration tool JMSAdmin enables administrators to define MQSeries
JMS objects and to store them within a JNDI namespace. JMS clients can
retrieve these administered objects from the namespaces by using the JNDI
interface. The tool also allows administrators to manipulate directory namespace
subcontexts within JNDI.

There are eight administered objects you can administer with JMSAdmin tool:

� MQQueueConnectionFactory
� MQTopicConnectionFactory
� MQQueue
� MQTopic
� MQXAQueueConnectionFactory
� MQXATopicConnectionFactory
� JMSWrapXAQueueConnectionFactory
� JMSWrapXATopicConnectionFactory

8.4.4 Invoking the administration tool
The administration tool has a command-line interface. You can use this
interactively or use it to start a batch process. The interactive mode provides a
command prompt where you can enter administration commands. In the batch
mode, the command to start the tool includes the name of a file that contains an
administration command script.

To start the tool in interactive mode, enter the command:

JMSAdmin [-t] [-v] [-cfg config_filename]

Where:

� -t enables trace (the default is trace off)
� -v produces verbose output (default is terse output)
� -cfg config_filename is the name of an alternative configuration file

Important: In our sample programs, we use the Persistent Name Server
provided by WebSphere Application Server as the JNDI server. We developed
the sample programs using VisualAge for Java Enterprise Edition and
WebSphere Application Server.

Note: JMSWrapXAQueueConnectionFactory and
JMSWrapTopicConnectionFactory are classes that are specific to WebSphere
and are contained in the package com.ibm.ejs.jms.mq.
254 MQSeries Programming Patterns

8.4.5 JMSAdmin tool configuration
JMSAdmin tool uses a configuration file with the following parameters in it:

� INITIAL_CONTEXT_FACTORY

This indicates the service provider that the tool uses. There are currently
three supported values for this property:

– com.sun.jndi.ldap.LdapCtxFactory

You use this class name when you are using an LDAP server as the JNDI
server. (We used IBM Secureway Server 3.2.1 in our tests.)

– com.sun.jndi.fscontext.RefFSContextFactory

Use this class name when you are using a file system to store the JNDI
objects.

– com.ibm.ejs.ns.jndi.CNInitialContextFactory

Use this class name when you are using the Persistent Name Server of
WebSphere.

� PROVIDER_URL

This indicates the URL of the session’s initial context, the root of all JNDI
operations carried out by the tool. Three forms of this property are currently
supported:

– ldap://hostname/contextname (for LDAP)

– file:[drive:]/pathname (for file system context)

The tool will not create the directory specified in the path. Make sure the
directory exists prior to using the JMSAdmin tool.

– iiop://hostname[:port] /[?TargetContext=ctx] (with WebSphere Persistent
Name Server)

� SECURITY_AUTHENTICATION

This indicates whether JNDI passes security credentials to your service
provider. This parameter is used only when an LDAP service provider is used.
This property can currently take one of three values:

– None (anonymous authentication)
– Simple (simple authentication)
– CRAM-MD5 (CRAM-MD5 authentication mechanism)

The above values are specified in a configuration file and you can specify the
configuration file when invoking the JMSAdmin tool with the -cfg parameter. A
sample configuration file named jmsadmin.config, located under
MQSeriesIntalldirectory\java\bin, can be edited or used to create the
configuration file with the property values specific to your environment.
 Chapter 8. Programming with JMS 255

8.4.6 Using JMSAdmin with the Persistent Name Server
Edit the JMSAdmin.config file that comes with the installation (you can find it
under MQSeriesIntalldirectory\java\bin) to indicate that the JMSAdmin tool
should use the Persistent Name Server and edit the PROVIDER_URL property
value to point to the Persistent Name Server. Then save the file in another folder,
for example C:\temp.

In the JMSAdmin.config file, the values we provide are:

� INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory

This value is valid for the Persistent Name Server provided by VisualAge for
Java Enterprise Edition and by WebSphere Application Server. For another
JNDI server, the INITIAL_CONTEXT_FACTORY variable must be provided in
the accompanying documentation.

� PROVIDER_URL=iiop://hostname/

where hostname is the name of the machine where the Persistent Name
Server is running. When the protocol IIOP is used, the default port is 900 and
doesn’t need to be mentioned. If you change the default port of the Persistent
Name Server (the default port is 900) in the bootstrap port parameter, you
must indicate the port in the PROVIDER_URL variable, for example
iiop://hostname:901/ (assuming you changed to port number 901 instead of
the default port of 900).

Invoke the JMSAdmin tool using the -cfg parameter and give the path where you
saved the JMSAdmin.config file after editing.

8.4.7 Using the Persistent Name Server with VisualAge for Java
The Persistent Name Server’s database should be accessible from VisualAge for
Java using JDBC. If it is the first time setting up the Persistent Name Server, you
will need to create a database (we used UDB 7.1 as our database server). We
created a database named jndi. For the Persistent Name Server to access the
database using JDBC, the VisualAge for Java workspace class path should also
include Db2UdbInstallDirectory\java\db2java.zip.

Starting the Persistent Name Server from VisualAge for Java
� From the VisualAge for Java menu bar, select Workspace -> Tools

->Websphere Test Environment (see Figure 8-2).
256 MQSeries Programming Patterns

Figure 8-2 Starting the Persistent Name Server from VisualAge for Java step 1

� Select the Persistent Name Server in the left-hand pane and enter the
parameter to connect to the configuration database of the Persistent Name
Server, as shown in Figure 8-3.
 Chapter 8. Programming with JMS 257

Figure 8-3 Persistent Name Server configuration panel

� Start the Persistent Name Server by clicking the Start Name Server button.

8.4.8 Configuring VisualAge for Java for use with JMS
The steps involved in setting up VisualAge for Java to work with JMSAdmin or
developing JMS Applications are:

� Verify that IBM Enterprise Extension Libraries and IBM WebSphere Test
Environment are loaded in the workspace.

� Import the following JAR files in to the project. The JAR files can be found
under MQInstallationDirectory\Java. We created a new project in VisualAge
for Java named JMSTest and this project is used in our illustration.

– com.ibm.mq.jar
– com.ibm.mqbind.jar
– com.ibm.mqjms.jar
– com.ibm.mq.iiop.jar

Important: The Persistent Name Server by default uses port number 900. If
you specify a different port, programs using the name server for JNDI lookup
should include the port number in the PROVIDER_URL parameter.
258 MQSeries Programming Patterns

– jms.jar
– jndi.jar
– ldap.jar
– fscontext.jar
– providerutil.jar

� Add the directory MQSeriesInstallDirectory\java\lib to the VisualAge for Java
workspace class path. This can be done by selecting Window ->
Options->Resources -->Edit and adding the directory (refer to Figure 8-4).

Figure 8-4 Setting VisualAge For Java workspace class path
 Chapter 8. Programming with JMS 259

� If you want to use the binding mode when accessing the queue manager, the
path system environment variable should include the
MQSeriesInstallDirectory\Java\bin directory. This directory contains the
mqjbnd02.dll which is required for using the binding mode.

8.4.9 Administering JMS JNDI objects with VisualAge for Java using
JMSAdmin

In this section we describe how to define and administer the JNDI objects
required for JMS implementation using the MQSeries JMS administration tool
JMSAdmin with VisualAge for Java.

We illustrate the use of the tool with the objects that are used in the subsequent
programming samples in this chapter for both the point-to-point and the
publish/subscribe messaging patterns.

MQSeries objects used
Table 8-1 lists the MQSeries objects that are used in the sample programs.

Table 8-1 MQSeries objects used in sample programs

Object Name Description

SAMPLE.QMGR1 Queue manager that will be used in the sample
programs

PTP.QUEUE.LOCAL Queue used by point-to-point samples

PTP.REPLY.QUEUE.LOCAL Queue used with request/reply to send reply
messages

JMS.SVR.CHNL Server Connection Channel used for client
connections

SYSTEM.JMS.ADMIN.QUEUE The JMS publish/subscribe Administration queue

SYSTEM.JMS.PS.STATUS.QUEUE The JMS publish/subscribe Status queue

SYSTEM.JMS.REPORT.QUEUE The JMS publish/subscribe Report queue

SYSTEM.JMS.MODEL.QUEUE The JMS publish/subscribe Subscribers Model queue.
(This model queue is used by subscribers to create a
permanent queue for subscriptions)

SYSTEM.JMS.ND.SUBSCRIBER.QUEUE JMS publish/subscribe Default Non-Durable Shared
queue (the default shared queue used by non-durable
subscribers)

SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE JMS publish/subscribe Default Non-Durable Shared
Queue for ConnectionConsumer functionality
260 MQSeries Programming Patterns

8.4.10 Defining JMS administered objects
First, we implement the administered objects that are used with the point-to-point
sample program. We will work with the Persistent Name Server as the JNDI
name server and invoke the JMSAdmin tool from VisualAge for Java. You should
have VisualAge set up to work with JMS, and the Persistent Name Server should
be configured and started as explained in 8.4.7, “Using the Persistent Name
Server with VisualAge for Java” on page 256 and 8.4.8, “Configuring VisualAge
for Java for use with JMS” on page 258.

Invoking the JMSAdmin tool from VisualAge for Java
� Update the JMSAdmin.config file to indicate that the JMSAdmin will be using

the Persistent Name Server by editing the property value for the initial context
factory:

INITIAL_CONTEXT_FACTORY=com.ibm.ejs.ns.jndi.CNInitialContextFactory

Note: In the LDAP server, it would be com.sun.jndi.ldap.LdapCtxFactory
and in the file system context, the value would be
com.sun.jndi.fscontext.RefFSContextFactory.

Edit the PROVIDER_URL to point to the JNDI name server. In this case we
are running the Persistent Name Server on a server named ITSOG, so it will
be:

PROVIDER_URL=iiop://itsog/

� Copy the above JMSAdmin.config file in the Project Resources of the project
you are working with (we are using a project named JMSTest). This can be
done from VisualAge for Java by doing the following:

– On the Resources tab, right-click the project and click Add -->
Resources, as shown in Figure 8-5.

SYSTEM.JMS.D.SUBSCRIBER.QUEUE JMS publish/subscribe Default Durable Shared Queue
(the default shared queue used by durable
subscribers)

SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE JMS publish/subscribe Default Durable Shared Queue
for ConnectionConsumer functionality

Object Name Description
 Chapter 8. Programming with JMS 261

Figure 8-5 Adding resources to VisualAge Project (step 1)

� Select the directory where the JMSAdmin.config file is located and click the
OK button (see Figure 8-6).
262 MQSeries Programming Patterns

Figure 8-6 Selecting the Resource Directory

� In the Add resources window shown in Figure 8-7, select the
JMSAdmin.config file and click OK.
 Chapter 8. Programming with JMS 263

Figure 8-7 Adding the JMSAdmin configuration file resource

� Expand your project and locate the JMSAdmin class (it is in the package
com.ibm.mq.jms.admin). Right-click the JMSAdmin class and choose
Properties (see Figure 8-8).
264 MQSeries Programming Patterns

Figure 8-8 Setting up class path for JMSAdmin (step 1)

� In the resulting Properties for JMSAdmin window shown in Figure 8-9, select
the Classpath tab, then click Edit and select the IBM Enterprise Extension
Libraries and IBM WebSphere Test Environment, and then click OK.
 Chapter 8. Programming with JMS 265

Figure 8-9 Class path for JMSAdmin

The setup for JMSAdmin is complete. Now we can run the JMSAdmin tool.
Highlight the JMSAdmin class and click the Run button to run the tool. On
successful startup, the console should look like that shown in Figure 8-10.
266 MQSeries Programming Patterns

Figure 8-10 JMSAdmin console

Now we are ready to create the JMS administered objects in JNDI.

1. Create a context. We use the JMSAdmin command DEFINE
CONTEXT(context) name to create the context for the context named ptpCtx
that will be used in the point-to-point sample programs.

In the console Standard input area (see Figure 8-11 on page 268), type the
command:

def ctx(ptpCtx)

Important: If you have problems starting up the JMSAdmin tool, verify that the
class path settings are correct and that the Persistent Name Server is started.
 Chapter 8. Programming with JMS 267

Figure 8-11 Creating a JNDI context using JMSAdmin tool

To display the context you just defined, use the dis ctx command. On
displaying the context, you should see the context you just created as
shown in Figure 8-12.
268 MQSeries Programming Patterns

Figure 8-12 Context in the JMS admin tool

2. Change to the context you just created using the following command:

chg ctx(ptpCtx)

3. Create a QueueConnection Factory named ptpQcf, with the following
commands:

def qcf(ptpQcf) transport(CLIENT) +

channel(JMS.SRV.CHNL) qmanager(SAMPLE.QMGR1) host(ITSOG)

4. Create a Queue object named ptpQcf, as follows:

def q(ptpQueue) queue(PTP.QUEUE.LOCAL) +

qmanager(SAMPLE.QMGR1)

You can verify the objects you created under the current context by using the
dis ctx command. You should see the QueueConnectionFactory (ptpQcf)
and the Queue (ptpQueue) objects as shown in Figure 8-13.
 Chapter 8. Programming with JMS 269

Figure 8-13 Display context

8.5 JMS application development
A JMS application uses either the point-to-point (PTP) or publish/subscribe style
of messaging. Nothing prevents these styles from being combined in a single
application; however, JMS focuses on applications that use one or the other.
JMS defines these two styles because they represent the two dominant
approaches to messaging currently in use. Since many messaging systems only
support one of these styles, JMS provides a separate domain for each and
defines compliance for each domain.

8.5.1 JMS point-to-point (PTP) model
Point-to-point messaging involves working with queues of messages. The
sender sends messages to a specific queue to be consumed normally by a
single receiver. In point-to-point communication, a message has at most one
recipient. A sending client addresses the message to the queue that holds the
messages for the intended (receiving) client. You can think of the queue as a
mailbox. Many clients might send messages to the queue, but a message is
270 MQSeries Programming Patterns

taken out by only one client. And, like a mailbox, messages remain in the queue
until they are removed. Thus the availability of the recipient client does not affect
the ability to deliver a message. In a point-to-point system, a client can be a
sender (message producer), a receiver (message consumer), or both.

8.5.2 Programming approach in point-to-point messaging
Figure 8-14 shows the high-level steps involved in developing a point-to-point
messaging program in JMS.

Figure 8-14 JMS PTP programming approach overview
 Chapter 8. Programming with JMS 271

The JMS interfaces in a point-to-point model are:

� QueueConnection
� QueueSession
� QueueSender
� QueueReceiver

When using JMS, connections are not made directly, but are built using a
connection factory. These Factory objects can be stored in a JNDI namespace,
thus hiding the vendor-specific implementation.

In point-to-point messaging, there are generally two messaging patterns as
shown in Figure 8-15. The first approach is the send-and-forget model, and the
second approach is the request/reply pattern.

Figure 8-15 Point-to-point messaging patterns

8.5.3 Send-and-forget
With send-and-forget (or fire-and-forget) no response is expected from the
receiver of the (datagram) messages.

Simple message producer application
Our first PTP client program creates a text message and sends it to an MQSeries
queue. We also illustrate the receiver program that processes the application
sent by the sender. The steps involved are:
272 MQSeries Programming Patterns

� Look up the JNDI namespace for the QueueConnectionFactory and the
Queue

� Get a Queue Connection object
� Create a QueueSession
� Create a QueueSender
� Create a TextMessage
� Send the message to the Queue
� Close and disconnect the connection objects

The program PtpSender.java illustrates the steps involved in developing a
point-to-point message sending application. The program sends a simple text
message to the MQSeries queue.

Example 8-1 PtpSender.java

Step 1 Import Necessary Packages
import java.util.*;
import javax.jms.*;
import javax.naming.directory.*;
import javax.naming.*;
public class PtpSender {
public static void main(String[] args) {
String queueName = "ptpQueue";
String qcfName = "ptpQcf" ;
Context jndiContext = null;
QueueConnectionFactory queueConnectionFactory = null;
QueueConnection queueConnection = null;
QueueSession queueSession = null;
Queue queue = null;
QueueSender queueSender = null;
TextMessage message = null;
String providerUrl = "iiop://itsog:900/ptpCtx" ;
String initialContextFactory = "com.ibm.ejs.ns.jndi.CNInitialContextFactory";

/**
Step 2 set up an Initial Context for JNDI lookup
*/
try{
Hashtable env = new Hashtable() ;
env.put(Context.INITIAL_CONTEXT_FACTORY, initialContextFactory) ;
env.put(Context.PROVIDER_URL , providerUrl);
//env.put(Context.REFERRAL, "throw") ;
jndiContext = new InitialDirContext(env);
/**
Step 3 get a QueueConnectionFactory. We will retrieve the
QueueConnectionFacotry object named ptpQcf created in Persistent Name Server
using JMSAdmin tool.
*/
queueConnectionFactory = (QueueConnectionFactory)jndiContext.lookup(qcfName);
 Chapter 8. Programming with JMS 273

/**
Step 4 the Queue object from the JNDI namespace.
*/
queue = (Queue)jndiContext.lookup(queueName);
/**
Step 5 Create a QueueConnection from the QueueConnectionFactory
*/
queueConnection = queueConnectionFactory.createQueueConnection();
/**
Step 6 Start the QueueConnection.
*/
queueConnection.start();
/**
Step 7 Create a QueueSession object from the QueueConnection
*/
queueSession = queueConnection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);
/**
Step 8 Create a QueueSender object for sending messages from the queue session.
*/
queueSender = queueSession.createSender(queue);
/**
Step 9 prepare a message object from the queuesession. we will create a
textMessage message object.
*/
message = queueSession.createTextMessage();
/**
Step 10 Set the message you want, to the message object.
*/
message.setText("This is a Test Message from PtpSender Class ") ;
/**
Step 11 Now we are ready to send the message.
*/
queueSender.send(message);
System.out.println(“\n The Message has been sent”);
/**
Step 12 Close the Queue Connection Before exiting from the program.
*/
queueConnection.close();

}catch (Exception e) {
e.printStackTrace();
}
}
}

274 MQSeries Programming Patterns

Simple message consumer application
Our next client application is a message receiver application, which gets the
message that was sent by the PtpSender application and prints out the message
on the console. The steps involved are:

� Look up the JNDI namespace for the QueueConnectionFactory and the
Queue.

� Get a Queue Connection object.

� Create a QueueSession.

� Create a QueueReceiver.

� Receive the message and display it.

� Close and disconnect the connection objects.

The program PtpReceiver.java illustrates the steps involved in creating a
point-to-point message consumer application. The application gets the message
from MQSeries queue and display the message.

Example 8-2 PtpReceiver.java

// Step 1 Import the Necessary Packages
import java.util.*;
import javax.jms.*;
import javax.naming.directory.*;
import javax.naming.*;
public class PtpReceiver {
/**
*The Main Method.
* @param no args
*/
public static void main(String[] args) {
String queueName = "ptpQueue";
String qcfName = "ptpQcf" ;
Context jndiContext = null;
QueueConnectionFactory queueConnectionFactory = null;
QueueConnection queueConnection = null;
QueueSession queueSession = null;
Queue queue = null;
QueueReceiver queueReceiver = null;
TextMessage message = null;
/* Provider url
/For Persistent Name Server- iiop://iiopservername/contextname
/For LDAP Server use ldap//cn=ContextName,o=OrganizationalSuffix,c=coutrysuffix
eg. ldap://machineName/cn=ptpCtx,o=itso,c=uk
*/
String providerUrl = "iiop://itsog/ptpCtx" ;
String initialContextFactory = "com.ibm.ejs.ns.jndi.CNInitialContextFactory";
 Chapter 8. Programming with JMS 275

/**
* Step 2 set up Initial Context for JNDI lookup
*/
try{
Hashtable env = new Hashtable() ;
env.put(Context.INITIAL_CONTEXT_FACTORY, initialContextFactory) ;
env.put(Context.PROVIDER_URL , providerUrl);
//env.put(Context.REFERRAL, "throw") ;
jndiContext = new InitialDirContext(env);
/**
* Step 3 get the QueueConnectionFactory from the JNDI Namespace
*/
queueConnectionFactory = (QueueConnectionFactory)jndiContext.lookup(qcfName);
/**
* Step 4 get the Queue Object from the JNDI Name space
*/
queue = (Queue)jndiContext.lookup(queueName);
/**
* Step 5 Create a QueueConnection using the QueueConnectionFactory
*/
queueConnection = queueConnectionFactory.createQueueConnection();
/*
*Step 6 Connections are always created in stopped mode. You have to Explicitly
start them. Start the queueConnection
*/
queueConnection.start();
/**
* Step 7 Create a queueSession object from the QueueConnection
*/
queueSession = queueConnection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);
/**
* Step 8 Create a QueueReceiver from the queueSession
*/
queueReceiver = queueSession.createReceiver(queue);
/**
* Step 9 Receive Messages. Here we are implementing a synchronous message
receiver. The receive call is in a loop so that it would process all the
available messages in the queue
*/
boolean eom = true;

 while (eom) {
 Message m = queueReceiver.receive(1);
 if (m != null) {
 if (m instanceof TextMessage) {
 message = (TextMessage) m;
 System.out.println("Reading message: " +
 message.getText()); }

else {
276 MQSeries Programming Patterns

 break;
 }
 }
 else eom = false;

 }
/**
* Step 10 Close the connections
*/
queueConnection.close();
}
catch(Exception e){
e.printStackTrace();
}
}
}

8.5.4 Request/reply
With request/reply messaging, after the receiver receives a request message, it
sends a reply back to the sender. On the sender’s end, the messages are
prepared just like that in PTP, but in addition the JMSReplyToQueue values are
set to the Queue Name where the sender expects the reply from the receiver.
When it gets the message, the receiver can use this reply-to-queue name to
send the reply message back to the sender.

JMS provides the JMSReplyTo message header field for specifying the
destination where a reply to a message should be sent. The JMSCorrelationId
header field can be used in the reply message to provide reference to the
request message.

Application design considerations in request/reply messaging
MQSeries is an asynchronous communications mechanism. In request/reply
messaging, when a client puts a message to a queue and then expects a reply,
care must be taken at the design level of the application. You do not want to wait
indefinitely on the queue for the reply message to arrive, since you do not know
how long it will take to get the reply for your request. The application design
should cover delayed replies and no reply at all. You may also want to consider
setting appropriate timeout values in waiting for the reply message.

If using timeouts in waiting for the reply message, you may want to consider
using a proper expiration time value on the remote client side, which generates
the reply message. In many request/reply situations, you may consider use of
non-persistent messages for performance enhancement. Using non-persistent
messages leads to significant performance improvements.
 Chapter 8. Programming with JMS 277

Non-persistent messages can be sent in three ways. The persistence property
can be set in one of the following ways:

� Directly on the queue object within the queue manager while creating the
MQSeries queue, or you can alter this on the existing MQSeries Queue.

� On the queue JMS Administered object in JNDI using JMSAdmin tool. The
parameter PERSISTENCE can be used to specify the value of the
persistence you want to set. The different values are:

– APP -- Persistence defined by application (This is the default)
– QDEF -- Persistence as defined on the MQSeries queue
– PERS -- Messages are persistent
– NON -- Messages are non-persistent

If you want to define a queue object name ptpQueue with persistence
NON, using JMSAdmin you can specify the command:

DEFINE Q(ptpQueue) PERSISTENCE(NON)

� On a per-message basis within the JMS application using the
DeliveryMode.NON_PERSISTENT field. Message persistence can be
modified on the QueueSender, or specified on the call to the send method,
but not directly on the message, as for example:

QueueSender sender = queueSession.createSender(queue) ;
sender.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

Or you can set the delivery mode while sending the message by specifying
delivery mode, priority, and time to live with the method call.

8.5.5 JMS publish/subscribe model
In contrast to the point-to-point model of communication, the publish/subscribe
model enables the delivery of a message to multiple recipients. A sending client
addresses, or publishes, the message to a topic to which multiple clients can be
subscribed. There can be multiple publishers, as well as subscribers, to a topic.
A durable subscription, or interest, exists across client shutdowns and restarts.
While a client is down, all objects that will have been delivered to the topic are
stored and then sent to the client when it renews the subscription. In a
publish/subscribe system, a client can be a publisher (message producer), a
subscriber (message consumer), or both.

The JMS publish/subscribe model defines how JMS clients publish messages to,
and subscribe to messages from, a well-known node in a content-based
hierarchy. JMS refers to these nodes as “topics”.
278 MQSeries Programming Patterns

In this section, the terms publish and subscribe are used in place of the more
generic terms produce and consume used previously. A topic can be thought of
as a mini message broker that gathers and distributes messages addressed to it.
By relying on the topic as an intermediary, message publishers are kept
independent of subscribers and vice versa. The topic automatically adapts as
both publishers and subscribers come and go. Publishers and subscribers are
active when the Java objects that represent them exist.

JMS also supports the optional durability of subscribers and “remembers" the
existence of them while they are inactive. MQSeries publish/subscribe removes
the need for your application to know anything about the target application. All it
has to do is send information it wants to share to a standard destination
managed by MQSeries publish/subscribe, and let MQSeries publish/subscribe
deal with the distribution. Similarly, the target application does not have to know
anything about the source of the information it receives.

Figure 8-16 illustrates the steps involved in developing a publish/subscribe
application with JMS.
 Chapter 8. Programming with JMS 279

Figure 8-16 JMS publish/subscribe programming overview

In a JMS implementation of the publish/subscribe messaging model, all the
vendor-specific implementations can be referenced through the following
interfaces in javax.jms. All of these are encapsulated in the implementation of the
following interfaces:

� QueueConnectionFactory
� TopicConnectionFactory
� Queue
� Topic

In the JMS publish/subscribe model, an asynchronous subscription of topics is
made possible when subscribing to a topic.
280 MQSeries Programming Patterns

Simple JMS publish/subscribe application
In this section, we illustrate the steps involved in developing a publishing
application with the sample program JMSPublisher.java. The steps involved in
writing a JMS publish application are:

1. Define the JMS administered objects:

a. Create a JNDI context.

The following command was used to create the JNDI context named
psCtx used in our sample programs:

DEF CTX(psCtx)

b. Change to the context you just created, using the following command:

CHG CTX(psCtx)

c. Create a TopicConnectionFactory.

The following command creates a TopicConnectionFactory named psTcf
referring to the QueueManager ITSOG.QMGR1 on host named ITSOG
listening on the default port 1414. The server connection channel used for
client connection is JMS.SRV.CHNL:

DEF TCF(psTcf) TRANSPORT(CLIENT) QMANAGER(ITSOG.QMGR1) HOST(ITSOG)
PORT(1414) CHANNEL(JMS.SRV.CHNL) BROKERQMGR(ITSOG.QMGR1)
BROKERCONQ(SYSTEM.BROKER.CONTROL.QUEUE)
BROKERPUBQ(SYSTEM.BROKER.DEFAULT.STREAM)
BROKERSUBQ(SYSTEM.JMS.ND.SUBSCRIBER.QUEUE)
BROKERCCSUBQ(SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE)

d. Define the JNDI topic.

The following command creates a Topic named psTopic for the topic
named SampleTopic under the root topic of JmsTest:

DEF T(psTopic) TOPIC(JMSTest/SampleTopic)

2. Look up the JNDI namespace for the TopicConnectionFactory and the Topic.

3. Create a Topic Connection.

4. Create a TopicSession.

5. Create a TopicPublisher.

6. Create a TextMessage.

7. Publish the message to the Topic.

8. Close and disconnect the connection objects.
 Chapter 8. Programming with JMS 281

Our first JMS publish/subscribe client program JMSPublisher.java creates a text
message and publishes it to a topic “SampleTopic”, which is under the root topic
of JMSTest. We also illustrate the subscriber program that subscribes to the topic
“TestTopic”.

Example 8-3 JMSPublisher.java

//Step 1 Import the necessary packages
import java.util.*;
import javax.jms.*;
import javax.naming.directory.*;
import javax.naming.*;

public class JMSPublisher {
/**
*The main method
*@param no args
*/
public static void main(String[] args) {

 String topicName = "cn=psTopic";
 String tcfName = "cn=psTcf" ;
 Context jndiContext = null;
 TopicConnectionFactory topicConnectionFactory = null;
 TopicConnection topicConnection = null;
 TopicSession topicSession = null;
 Topic topic = null;
 TopicPublisher publisher = null;
 TextMessage message = null;

 String providerUrl = "ldap://itsog/cn=psCtx,o=itsog,c=uk" ;
 String initialContextFactory = "com.sun.jndi.ldap.LdapCtxFactory";
//Step 2 Set up an Initial context for JNDI lookUp.
try {

 Hashtable env = new Hashtable() ;
 env.put(Context.INITIAL_CONTEXT_FACTORY, initialContextFactory) ;
 env.put(Context.PROVIDER_URL , providerUrl);
 jndiContext = new InitialDirContext(env);

//Step 3 Obtain a TopicConnection factory
 topicConnectionFactory =

(TopicConnectionFactory)jndiContext.lookup(tcfName);
// Step 4 Create a Topic Connection using the connection factory object

 topicConnection = topicConnectionFactory.createTopicConnection();
//Step 5 Start the topic connection.

 topicConnection.start();
//Step 6 Obtain a Topic from the JNDI

 topic = (Topic)jndiContext.lookup(topicName);
// Step 7 Create a Topic Session from the topic connection
282 MQSeries Programming Patterns

 topicSession = topicConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);
//Step 8 Create a topic publisher for the topic from the session.

 publisher = topicSession.createPublisher(topic);
//Step 9 Create a message object

 message = topicSession.createTextMessage();
//Step 10 prepare the body of the message

 message.setText("This is a Test Message from JMSPublisher Class ") ;
//Step 11 Publish the message.

 publisher.publish(message);
//Step 12 Close the connections.

 publisher.close();
 topicSession.close();
 topicConnection.close();

}
catch(Exception e) {
e.printStackTrace();
}
}
}

Simple JMS subscriber application
In this section, we illustrate the steps involved in developing a JMS subscriber
application by creating a sample application.

The steps involved in writing a JMS subscriber application are:

1. Look up the JNDI namespace for the TopicConnectionFactory and the Topic
2. Create a Topic Connection
3. Create a TopicSession
4. Create a TopicSubscriber
5. Receive subscription from the Topic
6. Close and disconnect the connection objects.

The program JMSSubscriber.java is a simple subscriber application that
subscribes to messages from the topic “SampleTopic” which is under the root
topic of JMSTest. We used a non-durable subscription in the sample.

Example 8-4 JMSSubscriber.java

//Step 1 Import the necessary packages.
import java.util.*;
import javax.jms.*;
import javax.naming.directory.*;
import javax.naming.*;
public class JMSSubscriber {
/**
* The main method
 Chapter 8. Programming with JMS 283

* @param no args
*/
public static void main(String[] args) {

 String topicName = "cn=psTopic";
 String tcfName = "cn=psTcf" ;
 Context jndiContext = null;
 TopicConnectionFactory topicConnectionFactory = null;
 TopicConnection topicConnection = null;
 TopicSession topicSession = null;
 Topic topic = null;
 TopicSubscriber subscriber = null;
 TextMessage message = null;
 String providerUrl = "ldap://itsog/cn=psCtx,o=itsog,c=uk" ;
 String initialContextFactory = "com.sun.jndi.ldap.LdapCtxFactory";

//Step 2 Set up Initial Context for JNDI lookup
try{
Hashtable env = new Hashtable() ;
env.put(Context.INITIAL_CONTEXT_FACTORY, initialContextFactory) ;
env.put(Context.PROVIDER_URL , providerUrl);
env.put(Context.REFERRAL, "throw") ;
jndiContext = new InitialDirContext(env);
//Step 3 Get the TopicConnection factory from the JNDI Namespace
topicConnectionFactory = (TopicConnectionFactory)jndiContext.lookup(tcfName);
//Step 4 Create a TopicConnection
topicConnection = topicConnectionFactory.createTopicConnection();
//Step 5 Start The topic connection
topicConnection.start();
//Step 6 Create a topic session from the topic connection
topicSession = topicConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);
//Step 7 Obtain a Topic from the JNDI namespace
topic = (Topic)jndiContext.lookup(topicName);
//Step 8 Create a topic subscriber for the topic.
subscriber = topicSession.createSubscriber(topic);//Non durable subscriber
// Step 9 Receive Subscription
message = (TextMessage)subscriber.receive();
System.out.println("\n *** The Message is " + message.getText());
//Step 10Close the connection and other open resources
subscriber.close();
topicSession.close();
topicConnection.close();
}
catch(Exception e) {
e.printStackTrace();
}
}
}

284 MQSeries Programming Patterns

8.6 Asynchronous processing
MQSeries JMS provides the much-awaited MessageListener interface. Using the
message listener facility, a client can register a listener object with a message
consumer. When a message arrives for the consumer, it is delivered by to the
client by calling its onMessage method.

This is an alternative to using the other approaches such as triggers, making
receive or subscribe calls with the wait or polling mechanism in the application
code to check for new messages or subscriptions. When using asynchronous
delivery mode with the listener, the entire session associated with the message
consumer is marked asynchronous. The same session cannot be used for
making any explicit receive calls.

In asynchronous message delivery, application code may not be able to catch
exceptions raised by failures to receive messages, since the application does not
make explicit receive calls. MQSeries JMS provides a facility to get those
exceptions through ExceptionListener interface. The onException method is
called when exceptions occur and the JMSException is passed to the method as
its parameter.

8.6.1 Message listeners
A message listener is created by implementing the MessageListener interface
and providing application-specific processing in the onMessage method of the
listener. We discuss how we can implement a simple message listener in a
message consumer application.

We first create a listener class (PTPListener.java), which extends the
JMSMessageListener class and implements the onMessage method. When a
message arrives, the message is delivered to the onMessage method as its
argument. We just display the message whenever a message arrives.

Example 8-5 PtpListener.java

import java.io.*;

import javax.jms.*;
public class PtpListener implements MessageListener {
/**
 * onMessage.
 */
public void onMessage(Message message) {

try {

if (message instanceof TextMessage) {
System.out.println(((TextMessage)message).getText());
 Chapter 8. Programming with JMS 285

}

} catch (JMSException e) {
e.printStackTrace();

}
}
}

In PtpAsyncConsumer.java, we illustrate how a message consumer would
register a listener, thus using asynchronous processing of the message. The
class PtpAsyncConsumer.java will use the listener implementation in
PtpListener.java to process messages asynchronously. You can run the
PtpAsyncConsumer along with the PtpSender application we illustrated in the
simple sender application.

Example 8-6 PtpAsyncConsumer.java

import java.util.*;
import javax.jms.*;
import javax.naming.directory.*;
import javax.naming.*;

public class PtpAsyncConsumer{
 String queueName = "cn=ptpQueue";
 String qcfName = "cn=ptpQcf" ;
 Context jndiContext = null;
 QueueConnectionFactory queueConnectionFactory = null;
 QueueConnection queueConnection = null;
 QueueSession queueSession = null;
 Queue queue = null;
 QueueReceiver queueReceiver = null;

 String providerUrl = "ldap://itsog/cn=ptpCtx,o=itsog,c=uk" ;
 String initialContextFactory = "com.sun.jndi.ldap.LdapCtxFactory";

public static void main(java.lang.String[] args) {
try {

PtpAsyncConsumer asyncConsumer = new PtpAsyncConsumer() ;
asyncConsumer.performTask();

 } catch (Exception e){
 e.printStackTrace();

}
}

 /**
 * Method performTask Control the flow of control of the logical operations
286 MQSeries Programming Patterns

 */
 public synchronized void performTask() throws Exception {
 System.out.println("\n Setting Up Initial JNDI Context ");
 Hashtable env = new Hashtable() ;

 env.put(Context.INITIAL_CONTEXT_FACTORY, initialContextFactory) ;
 env.put(Context.PROVIDER_URL , providerUrl);
 env.put(Context.REFERRAL, "throw") ;
 jndiContext = new InitialDirContext(env);

 System.out.println("\n Get QueueConnectionFactory ");

 queueConnectionFactory =
(QueueConnectionFactory)jndiContext.lookup(qcfName);

 System.out.println("\n Get Queue ");
 queue = (Queue)jndiContext.lookup(queueName);

 System.out.println("\n Create Queue Connections ");
 queueConnection = queueConnectionFactory.createQueueConnection();

 System.out.println("\n Start Queue Connection ");
 queueConnection.start();

 System.out.println("\n Create Queue Session ");
 queueSession = queueConnection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

System.out.println("\n Create Queue Receiver ");
queueReceiver = queueSession.createReceiver(queue);

System.out.println("\n Register the Listener");
 PtpListener yahoo = new PtpListener();

queueReceiver.setMessageListener(yahoo);
// Wait for new messages.
wait();

 }
}

8.6.2 Exception listeners
When using the asynchronous message delivery model using message listeners,
the application code cannot catch exceptions raised by failures to receive
messages. This is because the application code does not make explicit calls to
receive() or subscribe() methods. To catch errors in asynchronous processing,
 Chapter 8. Programming with JMS 287

you can register an ExceptionListener, which is an instance of a class that
implements the onException() method. An exception listener allows a client to be
notified of a problem asynchronously. If an exception listener is registered, when
errors occur the onMessage() method is called, with the JMSException object
passed to the method as its argument. The exception listeners are set on the
connection.

We illustrate how to implement an exception listener with a very simple
application:

Example 8-7 JMSExceptionListener.java

import java.io.*;

import javax.jms.*;
public class JMSExceptionListener implements ExceptionListener {
/**
 * onException. We will just print the exception and exit from the program
execution. Add suitable error handling and recovery logic depending on you
use..
 */
public void onException(JMSException e) {

e.printStackTrace();
System.exit(1);

}
}

Now that we have the exception listener, we can use the listener in an
asynchronous consumer by instantiating the JMSExceptionListener and
registering the exception listener with the connection object using the
setExceptionListener method:

JMSExceptionListener exListener = new JMSExceptionListener();
queueConnection.setExceptionListener(exListener);

The setExceptionListener method sets the exception listener for the connection
object queueConnection.
288 MQSeries Programming Patterns

8.7 Message selectors
JMS provides facilities to query the messages on a queue so that a subset of the
messages can be selected based on a given criteria. This can be thought of as a
SQL query facility in databases. In fact the syntax for such a search is based on
SQL92 standards for conditional expressions. A message selector is a string
containing a conditional expression. The message selector can refer to fields in
the JMS message header as well as fields in the message properties that are
application-defined fields.

The order of evaluation of a message selector is from left to right within
precedence level. You can use parentheses to change the order of evaluation.
The selector literals and operator names are case sensitive.

A selector may contain:

� Literals:

– A string literal is enclosed in single quotes with an included single quote
represented by a doubled single quote such as ‘literal’ and ‘literal’’s. Like
Java String literals, these use the unicode character encoding.

– An exact numeric literal is a numeric value without a decimal point, such
as 57, -957, +62. Numbers in the range of Java long are supported. Exact
numeric literals use the Java integer literal syntax.

– An approximate numeric literal is a numeric value in scientific notation
such as 7E3, -57.9E2 or a numeric value with a decimal such as 7., -95.7,
+6.2. Numbers in the range of Java double are supported. Approximate
literals use the Java floating point literal syntax.

– The boolean literals TRUE and FALSE.

� Identifiers:

– An identifier is an unlimited-length character sequence that must begin
with a Java identifier start character and all following characters must be
Java identifier part characters. An identifier start character is any character
for which the method Character.isJavaIdentifierStart returns true. This
includes ‘_’ and ‘$’. An identifier part character is any character for which
the method Character.isJavaIdentifierPart returns true.

– Identifiers cannot be the names NULL, TRUE, or FALSE.

– Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, and IS.

– Identifiers are either header field references or property references.

– Identifiers are case sensitive.

– Message header field references are restricted to JMSDeliveryMode,
JMSPriority, JMSMessageID, JMSTimestamp, JMSCorrelationID, and
 Chapter 8. Programming with JMS 289

JMSType. JMSMessageID, JMSCorrelationID, and JMSType values may
be null and if so are treated as a NULL value.

– Any name beginning with ‘JMSX’ is a JMS defined property name.

– Any name beginning with ‘JMS_’ is a provider-specific property name.

– Any name that does not begin with ‘JMS’ is an application-specific
property name. If a property is referenced that does not exist in a
message, its value is NULL. If it does exist, its value is the corresponding
property value.

� Whitespace is the same as that defined for Java: space, horizontal tab, form
feed and line terminator.

� Expressions:

– A selector is a conditional expression. A selector that evaluates to true
matches. A selector that evaluates to false or unknown does not match.

– Arithmetic expressions are composed of themselves, arithmetic
operations, identifiers with numeric values, and numeric literals.

– Conditional expressions are composed of themselves, comparison
operations, logical operations, identifiers with boolean values, and
boolean literals.

– Standard bracketing () for ordering expression evaluation is supported.

� Logical operators in precedence order: NOT, AND, OR

� Comparison operators: =, >, >=, <, <=, <> (not equal)

– Only like type values can be compared. One exception is that it is valid to
compare exact numeric values and approximate numeric values (the type
conversion required is defined by the rules of Java numeric promotion). If
the comparison of non-like type values is attempted, the selector is always
false.

– String and Boolean comparison is restricted to = and <>. Two strings are
equal if and only if they contain the same sequence of characters.

� Arithmetic operators in precedence order:

– +, - unary

– *, / multiplication and division

– +, - addition and subtraction

– Arithmetic operations must use Java numeric promotion.

� Arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3
comparison operator

– Age BETWEEN 15 and 19 is equivalent to age >= 15 AND age <= 19
290 MQSeries Programming Patterns

– Age NOT BETWEEN 15 and 19 is equivalent to age < 15 OR age > 19

� identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator
where identifier has a string or NULL value.

– Country IN (’ UK’, ’US’, ’France’) is true for ‘UK’ and false for ‘Peru’. It is
equivalent to the expression (Country = ’ UK’) OR (Country = ’ US’) OR
(Country = ’ France’).

– Country NOT IN (’ UK’, ’US’, ’France’) is false for ‘UK’ and true for ‘Peru’. It
is equivalent to the expression NOT ((Country = ’ UK’) OR (Country = ’
US’) OR (Country = ’ France’)).

– If the identifier of an IN or NOT IN operation is NULL, the value of the
operation is unknown.

– Identifier [NOT] LIKE pattern-value [ESCAPE escape-character]
comparison operator, where the identifier has a string value. Pattern-value
is a string literal where ‘_’ stands for any single character. ‘%’ stands for
any sequence of characters (including the empty sequence). All other
characters stand for themselves. The optional escape character is a single
character string literal whose character is used to escape the special
meaning of the ‘_’ and ‘%’ in pattern-value.

– Phone LIKE ‘12%3’ is true for ‘123’ ‘12993’ and false for ‘1234’

– Word LIKE ‘l_se’ is true for ‘lose’ and false for ‘loose’

– Underscored LIKE ‘_%’ ESCAPE ‘\’ is true for ‘_foo’ and false for ‘bar’

– Phone NOT LIKE ‘12%3’ is false for ‘123’ and ‘12993’ and true for ‘1234’

– If identifier of a LIKE or NOT LIKE operation is NULL the value of the
operation is unknown.

� Identifier IS NULL comparison operator tests for a null header field value, or a
missing property value.

– prop_name IS NULL

� Identifier IS NOT NULL comparison operator tests for the existence of a
non-null header field value or property value.

– prop_name IS NOT NULL

JMS providers are required to verify the syntactic correctness of a message
selector at the time it is presented. A method providing a syntactically incorrect
selector must result in a JMS InvalidSelectorException.

The following message selector selects messages with a message type of car
and color of blue and weight greater than 2500 lbs:

“JMSType = ‘car’ AND color = ‘blue’ AND weight > 2500”
 Chapter 8. Programming with JMS 291

8.7.1 Working with message selectors
Message selectors can be set as a user-defined property on the message. On
the sending or publishing side, the set property method that takes a name value
pair can be used to set the property name and its value.

To set a property named ‘ testProperty ‘ with a value of 100 and data type being
integer, the property can be set on the object message by:

messaget.setIntProperty(“testProperty”, 100) ;

The set property method takes two arguments. The first argument is type String
and is the name of the property value. The second argument is the value of the
property. Use the appropriate set property method (setIntProperty for integer
values, setStringProperty for values of String type, etc.) depending on the data
type of the value you want to set.

On the message consumer side, a message selector string with the appropriate
selection criteria is used. The selection criteria is specified at the time of creating
the message consumer.

We use a selection criteria of selecting messaging with property name
‘testProperty’ and value being 100. It can be done by:

String selector = “testProperty = 100 “ ;
queueReceiver = session.createReceiver(queueName, selector).

The message consumer created with the selector gets a message with a
property named “testProperty” and with the value being 100.

JMS specification does not permit the selector associated with a message
consumer to be changed once it is created. If you need message receivers with
different criteria, you may need to create separate message receivers.

Once a message consumer is created with a message selector, you can check
the selector value by using the method getMessageSelector() on the message
consumer.

In the queueReceiver we used in the illustration above, the getMessageSelector
method returns a string with the selector value
queueReceiver.getMessageSelector(). This will return testProperty = 100.

 Null values: Header fields and Property values may be NULL. The rules of
evaluation of the selector expression when NULL values are SQL treats NULL
values as Unknown. Hence any comparisons or arithmetic operations
involving NULL value would result in Unknown value.
292 MQSeries Programming Patterns

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246506

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246506.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246506.zip Zipped Code Samples

A

© Copyright IBM Corp. 2002. All rights reserved. 293

ftp://www.redbooks.ibm.com/redbooks/SG246506
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20 MB minimum
Operating System: Windows NT or Windows 2000
Processor: 300 MHz or higher
Memory: 256 MB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
294 MQSeries Programming Patterns

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 296.

� MQSeries Publish/Subscribe Applications, SG24-6282

� MQSeries Primer, a redpaper found at http://www.ibm.com/redbooks

Other resources
These publications are also relevant as further information sources:

� An Introduction to Messaging and Queuing, GC33-0805

� MQSeries Application Programming Reference, SC33-1673

� MQSeries Application Programming Guide, SC33-0807

� MQSeries Application Programming Reference Summary, SX33-6095

� MQSeries Clients, GC33-1632

� MQSeries Application Message Interface Reference, SC34-5604

� MQSeries Using C++, SC33-1877

� MQSeries Using the Component Object Model Interface, SC34-5387

� MQSeries Using Java, SC34-5456

Referenced Web sites
These Web sites are also relevant as further information sources:

� MQSeries manuals

http://www-3.ibm.com/software/ts/mqseries/library/manuals/

� XA Specification

http://www.opengroup.org
© Copyright IBM Corp. 2002. All rights reserved. 295

http://www-3.ibm.com/software/ts/mqseries/library/manuals/
http://www.opengroup.org

� MQSeries SupportPacs

http://www.ibm.com/software/ts/mqseries/txppacs/

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order
hardcopy from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
296 MQSeries Programming Patterns296 MQSeries Programming Patterns

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/software/ts/mqseries/txppacs/

acronyms
AMI Application Message
Interface

API Application Programming
Interface

COM Component Object Model

DCOM Distributed Component
Object Model

DLQ Dead Letter Queue

ESQL Extended Structured Query
Language

FIFO First In First Out

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

JDK Java Development Kit

JMS Java Message Service

JNDI Java Naming and Directory
Interface Interface

JRE Java Runtime Environment

JVM Java virtual machine

MQI Message Queue Interface

MTS Microsoft Transaction Server

PTP Point-to-point

SQL Structured Query Language

XML Extensible Markup Language

Abbreviations and
© Copyright IBM Corp. 2002. All rights reserved.
 297

298 MQSeries Programming Patterns

Index

A
ACID 13
acknowledge 251
ActiveX 19, 181
ActiveX/COM 4
addTopic() 111, 112, 113
administered objects 246
administration role 93
administration tool 92
AIX 25, 26, 94, 96, 97, 98, 134, 135, 204, 205, 206,
252
alias queue 36, 187
AMI 18
AMQZSTUB 26
amtc.h 96
amtcpp.hpp 96
anonymous registration 113
API 4, 18
applets 20, 203
Application Message Interface 90
applications 4, 13
array 38
AS/400 25, 26, 41, 94, 97, 134
asynchronous 239, 287
AT&T GIS UNIX 25
Atomicity 13
attributes 100

B
backout 24
BackoutCount 16
BackoutThreshold 16
Balance 12
begin() 116
bidirectional 15
binding mode 24, 207, 211, 260
bindings 90
boolean 241
bootstrap port 256
browse cursor 148
browsing messages 23
buffer 45, 142, 150
business logic 90
© Copyright IBM Corp. 2002. All rights reserved.
BytesMessage 247

C
C 4, 38
C ANSI 59
C++ 4, 19
CCSID 228
character attributes 51
CICS 16, 41, 134
CICS Bridge 19
client channel definition 134
client connection 208
client connection mode 207
close() 114, 123
closing queue objects 23
COBOL 4, 25, 38
COM 182, 197
COM+ 182, 197
commit 14, 16, 24, 115, 144, 151
commit phase 15
commit() 116
compilers 98
completion code 32
Component Object Model 182
connecting to queue manager 23
connection 239
connection factory 239
connection handle 38
connection mode 207
Consistency 14
constants 24
constructor call 210
consumer 252
consuming messages 4
content 4
context 40, 268
control 24
coordinating 14
copybook 97, 98
correlation ID 8
CorrelId 48
CRAM-MD5 255
createDistributionList() 106
 299

createMessage() 107
createPolicy() 102, 108
createPublisher 243
createPublisher() 104
createQueueConnection() 241
createReceiver() 104, 245
createSender 243
createSender() 103
createSession() 101, 119
createSubscriber() 105
createTopicSession() 241

D
data integrity 14
datagram 9, 12
DataLength 51
DB2 14
DC/OSx 25
DCOM 182
dead-letter header 143
dead-letter queue 143
development role 93
Digital OpenVMS 25
disconnecting from queue manager 23
Distributed COM 182
distributed transaction 151
distribution list 37, 45, 90, 92, 99, 106
DNS 240
Durability 14
dynamic queue 36, 37, 140

E
Encina 16, 27
environment variables 25
environments 24
errors 4
exception listener 288
exceptions 4
expire 4
extension 133

F
FIFO 32
FIFO within Priority 32
free-threading 183

G
generic 38
getBytes() 109, 120
getMessageSelector() 292
getting messages 23
global 16
global units of work 55
group 231
GroupId 48
grouping 56

H
handle 32, 38, 40
HCONN 245
hierarchy 7
HOBJ 245
HP-UX 25, 27, 94, 96, 97, 98, 134, 135, 204, 205,
206, 252

I
IIOP 256
ILE C/400 26
import 124
ImqBoolean 145
ImqCache 143
ImqDeadLetterHeader 143
ImqGetMessageOptions 147
ImqIMSBridgeHeader 146
ImqItem 146
ImqMessage 143, 146
ImqMessageTracker 147
ImqObject 149
ImqPutMessageOptions 144
ImqPutMessages 151
ImqQueue 145
ImqQueueManager 144, 151
ImqReferenceHeader 146
IMS 16, 134
IMS Bridge 19
indexing 48
in-doubt 15
infinite loop 16
inquire 51
inquiring about object attributes 23
integer attributes 51
interpret 4
iSeries 204, 205, 206
Isolation 14
300 MQSeries Programming Patterns

J
Java 4, 19, 204
Java Development Kit 205
Java Messaging Service 235
Java native method 123
Java virtual machine 118
JavaScript 183, 197
javax.jms 246
JDBC 20, 236
JDK 205
JMS xi, 20, 235
JMS client 237
JMSAdmin 254, 255, 264
JMSWrapXAQueueConnectionFactory 254
JMSWrapXATopicConnectionFactory 254
JNDI 240, 246, 254, 278
Just-in-time 19
JVM 121

L
LDAP 240, 255
libraries 96
Linux 204, 205, 206, 252
Local queues 35
local units of work 55
Logical message 227
logical order 17, 32, 46, 49
lookup() 240

M
MA0C 94
MA0F 92, 94, 101
MA1G 205
MA88 204, 205, 252
many-to-one 3
MapMessage 247
mapping 92, 248
memory 122
message broker 8, 92
message grouping 16, 23, 58
message object 109, 127, 189
Message Queue Interface xi
message selector 244
messaging 4
method 140, 186
Micro Focus 26
Microsoft Internet Explorer 183
Microsoft Transaction Server 196

model queue 37
MQAX200 200
MQBACK 28, 55
MQBEGIN 28, 55
MQBO 28
MQBYTE 30
MQBYTEn 30
MQC 214
MQCD 138
MQChannelDefinition 208
MQCHAR 30
MQCHARn 30
MQCLOSE 28, 30
MQCMIT 28, 55
MQCNO 28
MQCONN 28, 30
MQCONNX 28
MQDH 28
MQDISC 28
MQDistributionList 188, 208
MQDistributionListItem 188, 208
MQDistributionListObject 191
MQDLH 29
MQEnvironment 208, 210
MQException 209
MQGET 28
MQGetMessageOptions 192, 209
MQGMO 29, 55
MQHCONN 30
MQHOBJ 30
MQI 18
MQINQ 28, 51
mqjbnd02.dll 260
MQLONG 30
MQManagedObject 209
MQMD 29, 45, 141, 192, 213, 214, 247, 248
MQMDE 29
MQMessage 209
MQMessage class 197
MQMessageTracker 209
MQOD 29, 38
MQOO 214
MQOPEN 28, 30, 43
MQOR 29, 38
MQPMO 29, 41, 55, 214
MQPMR 29
MQPoolServices 209
MQPoolServicesEvent 209
MQPoolToken 209
 Index 301

MQProcess 209
MQPUT 28, 43
MQPUT1 28, 43
MQPutMessageOptions 190, 194, 209
MQQueue 188, 210, 254
MQQueueConnectionFactory 254
MQQueueManager 186, 193, 195, 210
MQReceiveExit 210
MQRFH 104, 172
MQRFH2 247, 248
MQRMH 29
MQRR 38
MQSecurityExit 210
MQSendExit 210
MQSeries xi, 4
MQSeries classes 208
MQSession 185, 189
MQSET 28
MQSimpleConnectionManager 210
MQTM 29
MQTMC 29
MQTMC2 29
MQTopic 254
MQTopicConnectionFactory 254
MQXAQueueConnectionFactory 254
MQXATopicConnectionFactory 254
MQXP 30
MQXQH 30
MsgId 48
MsgSeqNumber 48
MTS 184
multiple segments 17
multi-threaded 241
MVS/ESA 25, 30

N
namespace 246
NDS 240
NIS 240

O
ObjectMessage 247
object-oriented 19, 134
objects 18, 19, 24, 90
Offset 48
OLE 182
one-to-many 3
one-to-one 3, 4

onException 285
onMessage 252, 285
oolicy 99
Open Applications Group 115
Open Applications Middleware 115
Open Group 15
open() 108
open/close calls 31
opening queue objects 23
operations 13, 23
ordering 227
OS/2 18, 135
OS/2 Warp 25, 30, 134
OS/390 98, 204, 205, 206
OS/400 98, 204, 205, 206

P
patterns xi, 4, 23, 129, 310
permanent dynamic queue 40
persistence 74, 278
physical order 32, 46, 49
PL/I 25
PMQLONG 30
pointer 33
point-to-point 4
policies 92
policy 91, 100, 103
policy object 109, 127
port 208
predefined queue 13
prepare phase 15
Priority 33
procedural 19
producer 239
programming tools 9
program-to-program 13
pseudo-code 56
publication data 74
publish 8, 112, 126
publish() 112
publish/subscribe 3, 4, 7, 9, 71, 90, 233
publisher 99, 104
publisher classes 127
PubSubCommand 83

Q
QChannelExit 208
queue 4
302 MQSeries Programming Patterns

QueueConnection 239
QueueConnectionFactory 239
QueueReceiver 245
queuing 12

R
RDBMS 20, 236
readBytes() 111
reason code 32
receive 123
receive() 110, 113, 287
receiver classes 127
receivers 4
Redbooks Web site 296

Contact us xiv
Reference header 146
register 76
relational database 14, 56
Remote queues 36
reply 5, 12
reply-to 37
report 12, 109
repository 92
request 12
request/reply 3, 4, 8, 221
resource manager 14
responder 225
response message 221
return code 32
rollback 15, 115, 151
rollback() 116
RPG/400 26

S
scope 34, 100
segmentation 17
selectors 51
send() 109
send-and-forget 3, 59
sender services 106
senders 4
sending messages 23
server connection 207
service 92
service point 92
servlets 20
session 239
session factory 101, 119

session object 100, 101, 106, 114, 127
set 53
setExceptionListener 288
setGroupStatus() 117
setting object attributes 23
setWaitTime() 123
single-phase 16
single-phase commit 14
SINIX 25
size 50
specification 32
SQL92 252
start() 239
stream 74, 249
StreamMessage 247
structure 24, 37, 38
style 4
subscribe() 112, 287
subscriber 99, 129
subscriber object 127
subscription 129
Sun Solaris 25, 94, 96, 97, 98, 134, 135, 204, 205,
206, 252
SunOS 25
SupportPacs xi
synchronize 14
syncpoint 144, 227

T
TAL 25
Tandem NonStop Kernel 25
TCP/IP 208, 238
temporary queue 9, 245
temporary topics 9
TextMessage 247
topic 7, 126
TopicConnection 240
TopicConnectionFactory 240
TopicSession 243
transaction 116
transaction management 23
transaction manager 14
transactional 115
transactions 13
transmission queue 36
trigger 252
Trigger message 19
Tuxedo 16, 117
 Index 303

two-phase 16
two-phase commit 14
types 24

U
UML 135
unit of work 14, 15, 16, 24, 115
UNIX 15, 18, 25, 30, 97, 205
unsubscribe() 113

V
VBScript 183, 197
VisiBroker 204, 205
Visual Basic 4, 25, 184
VisualAge 260

W
wait time 222
Windows 25, 97, 98, 204
Windows 2000 93, 94, 183, 184, 197, 205, 206
Windows 3.1 135
Windows 95 135, 183, 205, 206
Windows 98 183, 205, 206
Windows NT 4, 25, 26, 30, 93, 94, 134, 135, 183,
205, 206, 252
writeBytes() 109, 120

X
X/Open 15
XA 116, 195
XA Distributed Transaction Processing 15
XA specification 14
XAQueueConnection 239
XAQueueConnectionFactory 239
XATopicConnection 240
XATopicConnectionFactory 240
XML 92

Y
YP 240

Z
z/OS 204, 205, 206
304 MQSeries Programming Patterns

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

M
QSeries Program

m
ing Patterns

®

SG24-6506-00 ISBN 0738423661

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

MQSeries Programming
Patterns

Install, tailor and
configure specialist
tools such as JMS
admin

Popular MQSeries
programming
choices discussed

Common
programming
pattern examples

Today MQSeries offers the programmer more choices than
ever in which to write new MQSeries applications, from the
most traditional Message Queue Interface API all the way
through to the popular and highly portable JMS interface.

Because of the many options available, it can sometimes be
difficult for an application programmer new to MQSeries to
easily understand the differences and benefits of each, or
appreciate the implications of using one programming
approach versus another.

This redbook will help you install, tailor and configure
specialist tools such as JMS admin, and will help you to
design/create MQSeries applications. It gives a broad and
general understanding of the currently available MQSeries
APIs.

We do this first by describing some of the more common
examples and coding patterns, and then explaining each one
in turn using the different APIs MQSeries supports to show
the merits of each particular programming choice.

This redbook positions the different MQSeries programming
choices against each other in such a way as to help the
application writer to make a clearer and more informed
judgment as to which is the most suitable programming
method for a particular situation.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Special notice
	Comments welcome

	Part 1 Introduction
	Chapter 1. Introduction and patterns
	1.1 Programming with MQSeries
	1.1.1 What are patterns?
	1.1.2 One-to-one message flows
	1.1.3 One-to-many message flows
	1.1.4 Many-to-one message flows
	1.1.5 Publish/subscribe
	1.1.6 Request/reply
	1.1.7 One-way datagram, or send-and-forget pattern

	Chapter 2. Messaging and the APIs
	2.1 Messaging, queuing and patterns
	2.1.1 What is messaging?
	2.1.2 What is queuing?
	2.1.3 What is message queuing?

	2.2 Transaction management
	2.2.1 Single-phase and two-phase commits
	2.2.2 XA specification
	2.2.3 Transactions in MQSeries

	2.3 Message grouping and segmentation
	2.4 MQSeries programming interfaces
	2.4.1 MQI
	2.4.2 AMI
	2.4.3 C++
	2.4.4 MQSeries automation classes for ActiveX
	2.4.5 Java
	2.4.6 JMS

	Part 2 The APIs
	Chapter 3. Programming with MQI
	3.1 Overview
	3.2 Platforms and languages
	3.3 Libraries and stub programs
	3.4 Architectural model
	3.5 Programming with MQI
	3.5.1 Basic API concepts
	3.5.2 Connecting to the queue manager
	3.5.3 Opening MQSeries objects
	3.5.4 Closing the MQSeries object
	3.5.5 Disconnecting from the queue manager
	3.5.6 Putting messages in a queue
	3.5.7 Getting messages from a queue
	3.5.8 Advanced topics

	3.6 Transactions in MQI
	3.7 Message grouping in MQI
	3.8 Exploring the patterns
	3.8.1 The one-to-one, or point-to-point pattern
	3.8.2 The publish/subscribe pattern

	Chapter 4. Programming with AMI
	4.1 Overview
	4.2 Platforms and languages
	4.3 Libraries and packages
	4.4 Architectural model
	4.5 Programming with AMI
	4.5.1 Connecting to the queue manager
	4.5.2 Opening MQSeries objects
	4.5.3 Basic operations
	4.5.4 Deleting the session and closing the connection

	4.6 How AMI compares to MQI
	4.7 Transaction management
	4.8 Grouping
	4.9 Exploring the patterns
	4.9.1 One-to-one or point-to-point
	4.9.2 Publish/subscribe

	Chapter 5. Programming with C++
	5.1 Overview
	5.1.1 Key features

	5.2 Platforms and languages
	5.3 Libraries
	5.4 C++ architectural model
	5.5 Programming with the C++ API
	5.5.1 Connecting to the queue manager
	5.5.2 Opening MQSeries objects
	5.5.3 Closing MQSeries objects
	5.5.4 Disconnecting from the queue manager
	5.5.5 Putting messages on a queue
	5.5.6 Getting messages from a queue

	5.6 Advance topics
	5.6.1 Browsing messages on a queue
	5.6.2 Inquiring about and setting object attributes

	5.7 Transaction management
	5.8 Message grouping
	5.9 Exploring the patterns
	5.9.1 The one-to-one or point-to-point pattern
	5.9.2 The publish/subscribe pattern

	Chapter 6. Programming with ActiveX
	6.1 Overview
	6.2 Platforms and languages
	6.3 Libraries
	6.4 Architectural model
	6.5 Programming with MQSeries automation classes for ActiveX
	6.5.1 Connecting to the queue manager
	6.5.2 Opening MQSeries objects
	6.5.3 Basic operations
	6.5.4 Closing objects
	6.5.5 Closing the connection

	6.6 Transaction management
	6.7 Grouping
	6.8 Exploring the patterns
	6.8.1 Send-and-forget
	6.8.2 Request/reply

	Chapter 7. Programming with Java
	7.1 Overview
	7.2 Platforms
	7.2.1 Obtaining the package
	7.2.2 Running the MQSeries classes for Java

	7.3 Using the MQSeries classes for Java
	7.3.1 Connection modes

	7.4 Working with MQSeries Java API
	7.4.1 Setting up the connections
	7.4.2 Interacting with queues
	7.4.3 Working with MQSeries messages

	7.5 Application development
	7.5.1 Point-to-point pattern

	Chapter 8. Programming with JMS
	8.1 What is JMS?
	8.2 Overview
	8.3 JMS messages
	8.3.1 Mapping JMS messages onto MQSeries messages
	8.3.2 JMS additional features

	8.4 MQSeries JMS implementation
	8.4.1 MQSeries JMS installation
	8.4.2 JMS administered objects - JNDI and JMSAdmin
	8.4.3 JMSAdmin tool
	8.4.4 Invoking the administration tool
	8.4.5 JMSAdmin tool configuration
	8.4.6 Using JMSAdmin with the Persistent Name Server
	8.4.7 Using the Persistent Name Server with VisualAge for Java
	8.4.8 Configuring VisualAge for Java for use with JMS
	8.4.9 Administering JMS JNDI objects with VisualAge for Java using JMSAdmin
	8.4.10 Defining JMS administered objects

	8.5 JMS application development
	8.5.1 JMS point-to-point (PTP) model
	8.5.2 Programming approach in point-to-point messaging
	8.5.3 Send-and-forget
	8.5.4 Request/reply
	8.5.5 JMS publish/subscribe model

	8.6 Asynchronous processing
	8.6.1 Message listeners
	8.6.2 Exception listeners

	8.7 Message selectors
	8.7.1 Working with message selectors

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Abbreviations and acronyms
	Index
	Back cover

